Живой кристалл - [6]
Для нашего моделирования надо ухитриться создать на некотором расстоянии друг от друга всего два одинаковых мыльных пузырька. Удобно проводить опыт с пузырьками, диаметр которых 1—2 мм.
Разобщенные пузырьки без нашего вмешательства вначале очень медленно, а затем, ускоряясь, будут двигаться навстречу друг другу, пока не столкнутся. Столкнувшись, они соприкоснутся не в точке, а как бы вдавятся один в другой. Это хорошо видно на рисунке на с. 15.
Оказывается (именно так: оказывается!), что с изменением расстояния между пузырьками энергия их взаимодействия изменяется по закону, очень близкому к тому, которому подчиняются атомы в металлах. Следя за тем, как изменяется скорость сближения двух одинаковых пузырьков с уменьшением расстояния между ними, можно установить свойственный им ход зависимости W(l). Так вот получается, что зависимость W(l) для пузырьков диаметром ≈ 1 мм почти такая же, как для атомов никеля. Речь, разумеется, идет не о количественном совпадении кривых, а об их ходе. По-моему, очень интересно!
ОТКРЫТИЕ ДЮЛОНГА И ПТИ
В истории физики 1819 г. отмечен свершением: французские ученые Пьер Луи Дюлонг и Алексис Терез Пти опубликовали результаты своих опытов по измерению теплоемкости твердых тел. Обобщая эти результаты, они сформулировали фундаментальный закон, согласно которому произведение теплоемкости одного грамма вещества в твердом состоянии на его молярную массу есть величина почти одинаковая для всех веществ, не зависит от температуры и составляет около шести калорий. Или, по-иному, теплоемкость в расчете на моль для всех веществ одна и та же: 6 кал/(моль•К). Осторожные слова «почти» и «около» нисколько не умаляют значимости обобщения. Это будет ясно из дальнейшего.
Сейчас трудно надежно реконструировать психологическую канву, на фоне которой было сделано это открытие, но думается, что, найдя такое широкое обобщение, Дюлонг и Пти должны были быть потрясены его величием. Так как моль любого вещества содержит одно и то же количество атомов, то находка Дюлонга и Пти означает, что для повышения на один градус температуры твердого вещества каждый его атом поглощает одно и то же количество энергии. Ничего удивительного нет в том, что все атомы данного элемента равноправны: с чего бы, собственно, им отличаться? А вот что перед законом равны и атомы различных элементов — это должно было бы поразить и открывателей, и их современников.
Для нас, прослеживающих судьбы живого кристалла, закон Дюлонга и Пти может явиться источником сведений о том, как движутся атомы в кристалле, — именно поэтому и начат рассказ о теплоемкости. Ведь тепло, поглощаемое кристаллом при его нагреве, расходуется на увеличение интенсивности теплового движения атомов.
Сделаем конкретное предположение о характере этого движения и попытаемся теоретически оправдать закон Дюлонга и Пти. Можно было бы строить логику в обратном порядке: исходить из закона Дюлонга и Пти и пытаться понять, какому характеру движения атомов он соответствует. Воспользуемся первой возможностью.
Допустим, что каждый атом в узле кристаллической решетки колеблется подобно маятнику независимо от своих соседей, ближних и тем более дальних. Воспользуемся следующей моделью кристалла и происходящего в нем теплового движения. Представим себе атом в виде весомого шарика, укрепленного на трех парах взаимно перпендикулярных пружинок так, как это изображено на рисунке. Три пары пружинок символизируют то обстоятельство, что атом может колебаться в трех взаимно перпендикулярных направлениях. Физики говорят так: атом имеет три независимые степени свободы. Итак, принимаем модель: кристалл — совокупность упорядоченно расположенных в пространстве «трехпружинных» маятников, каждый из которых по существу является совокупностью трех осцилляторов.
Прежде чем эту модель положить в основу расчета теплоемкости, необходимо определить энергию колеблющегося маятника. Безотносительно к значению этой энергии можно утверждать, что в течение одного периода колебаний маятника ее величина должна оставаться неизменной, к этому ее обязывает закон сохранения энергии. В предыдущей фразе упомянут «один период» лишь потому, что любой из периодов в равной мере подвластен закону сохранения энергии. В колеблющемся маятнике последовательно происходит преобразование кинетической энергии в потенциальную и потенциальной в кинетическую, при этом в среднем за период каждая из этих энергий оказывается равной kT/2, и в сумме они составляют полную энергию осциллятора
W>o = kT, где k — уже встречавшаяся константа Больцмана.
В кристалле, масса которого равна молярной, имеетсяNатомов, т. е. 3N маятников, где N = 6 • 10>23 моль>-1 — так называемое число Авогадро. Так как средняя тепловая энергия каждого из атомов W>o, то тепловая энергия, заключенная в кристалле, W = 3NkТ. Зная энергию W, мы легко определим теплоемкость кристалла:
С = W/Т = 3Nk. Если воспользоваться известными значениями N и k и учесть, что одна калория равна 4,2 •10>7 эрг, легко убедиться, что предыдущая формула означает: С ≈ 6 кал/(моль • К)!
Серьезный успех: мы придумали элементарную модель теплового движения в кристалле и получили закон Дюлонга и Пти. Прочтем наш результат немного по-иному: согласующийся с нашим расчетом и экспериментально подтвержденный закон Дюлонга и Пти свидетельствует о том, что мы, видимо, правильно понимаем характер теплового движения атомов в кристалле, воплощенный в нашей модели.
Слово «паразит» ни у кого не вызывает положительных эмоций. Паразитами называют тех, кто живет за чужой счет, — идет ли речь о людях или патогенных организмах. Тем не менее, само существование паразитов будоражит наше воображение: нас поражает их способность адаптации к меняющимся внешним условиям, их сложный жизненный цикл, их «модус операнди», не имеющий аналогов в животном мире. Эта книга максимально доступным языком, с использованием множества примеров рассказывает о том, чем занимается наука паразитология.
Наш прекрасный мир и его чудесная природа обрели свой вид только благодаря грибам, без которых немыслима ни одна экосистема. Без них не было бы ни наших лесов, ни нашего климата, да и, возможно, самой жизни. Грибы вездесущи, и, если использовать их правильно, они могут помочь нам в совершенно неожиданных областях. Грибы – партнеры, грибы – мастера утилизации отходов, грибы – чудо-лекарство, грибы – источник страсти… Известный австрийский биолог и специалист по охране природы, автор более 20 книг Роберт Хофрихтер, обобщая научные данные и собственный профессиональный и жизненный опыт, расскажет в этой книге о многом, чего мы до сих пор не знали о грибах.
Книга рассказывает о прошлом, настоящем и будущем самых, быть может, загадочных созданий на Земле. О том, как выглядели древнейшие, ранние киты, как эти обитавшие на суше животные миллионы лет назад перешли к водному образу жизни, мы узнаем по окаменелостям. Поиск ископаемых костей китов и работа по анатомическому описанию существующих видов приводила автора в самые разные точки планеты: от пустыни Атакама в Чили, где обнаружено самое большое в мире кладбище древних китов — Серро-Баллена, до китобойной станции в Исландии, от арктических до антарктических морей. Киты по-прежнему остаются загадочными созданиями.
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
Как происходит дыхание? Почему нам порой не хватает воздуха и какое отношение имеет к этому маленькая Русалочка? Как наши эмоции влияют на дыхание? Почему мы кашляем, но не чувствуем боли в дыхательных путях? Может ли вырасти новое легкое? Как самый большой орган нашего тела защищается от микробов и вредных веществ. И самое главное: что мы можем предпринять, чтобы этот чудесный орган сохранял свою работоспособность всю жизнь? Обо всем этом увлекательно и захватывающе повествует специалист по легким Кай-Михаэль Бе. Для широкого круга читателей.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.