Живой кристалл - [4]

Шрифт
Интервал

Хорошо бы придумать такой прием моделирования, который передавал бы конкуренцию сил притяжения и отталкивания, а это и значит — не омертвлял бы взаимодействие между атомами в кристалле. Именно это и сделали авторы модели БНЛ! В качестве строительных элементов модели они использовали не глиняные и не деревянные шарики, а маленькие, абсолютно одинаковые мыльные пузырьки, которые в один слой расположены на поверхности мыльной воды. Плавающий плот из пузырьков и есть модель кристалла. На площади 100 см>2 можно расположить плот из более десяти тысяч пузырьков диаметром 1 мм. Это вполне макроскопический двумерный «кристалл», им можно моделировать многое, происходящее в реальном кристалле.

Осуществить модель БНЛ просто. Для этого нужно совсем элементарное оборудование: тарелка, игла от медицинского шприца, волейбольная камера и зажим, которым можно было бы с различной силой сжимать резиновую трубку-отросток волейбольной камеры. Тарелку надо почти доверху заполнить мыльной водой и добавить в нее несколько капель глицерина, для того чтобы пузырьки, которые мы будем выдувать на поверхности мыльной воды, получились устойчивыми. Надуть волейбольную камеру, зажать ее отросток и вставить в него иглу от шприца. Разумеется, тупым концом. Если поместить иглу под поверхность воды и немного ослабить зажим, из иглы одна за другой начнут выходить строго одинаковые порции воздуха, которые будут превращаться в столь же одинаковые мыльные пузырьки. В этом очерке — рассказ о взаимодействии между пузырьками, моделирующими атомы. О взаимодействии между атомами, составляющими кристалл, — в следующем.

Мыльные пузырьки не безучастны друг к другу. Два разобщенных мыльных пузыря на поверхности воды друг к другу притягиваются, а соприкоснувшись — отталкиваются друг от друга.

Попытаемся понять происхождение силы притяжения. Бесспорно следующее утверждение: сила появляется вследствие того, что сближение пузырьков сопровождается уменьшением связанной с ними избыточной энергии.

Поначалу хочется предположить, что эта энергия связана с поверхностью пузырей. Логика это желание легко подавит, подсказав, что поверхностная энергия не уменьшается при сближении пузырьков, а значит, их сближение окажется неоправданным. Есть, однако, иное слагаемое избыточной энергии совокупности двух пузырьков, которое оказывается зависящим от расстояния между ними. Дело в том, что каждый из пузырьков окружен областью, где уровень воды поднят над ее средним уровнем в сосуде. И следовательно, потенциальная энергия системы увеличена тем больше, чем большая масса воды и на бо́льшую высоту поднята. Степень поднятия убывает по мере удаления от центра пузырька. Если пузырьки удалены друг от друга на расстояние не очень большое, при котором области поднятия жидкости вокруг каждого из пузырьков частично перекрываются, их сближение оказывается выгодным, так как при этом уменьшается масса поднятой жидкости и, следовательно, связанная с ней избыточная потенциальная энергия. Приводимые рисунки качественно это поясняют.

После того, как пузырьки соприкоснутся, прижимающая их сила увеличит давление заключенного в них газа и, следовательно, возникнет сила отталкивания. Обе силы — и притяжения, и отталкивания — нами найдены.

Итак, мы познакомились с моделью БНЛ: двумерный плот из огромного количества одинаковых мыльных пузырьков, взаимодействие между которыми не заморожено и отражает притяжение и отталкивание между атомами в реальных кристаллах.

В модели БНЛ нет пространственной периодичности реальных структур, двумерный плот может иметь только структуру плотной упаковки, подобную паркету, выложенному из шестигранных плит. Это — недостатки модели. Им противостоит огромное достоинство — в ней моделируется взаимодействие между элементами, составляющими кристалл.

Не будем упрекать модель в ее слабостях — и о которых упомянули, и о которых умолчали. Будем ей благодарны за ее сильные стороны.


ВЗАИМОДЕЙСТВИЕ МЕЖДУ АТОМАМИ

По свежему следу предыдущего очерка воспользуемся моделью БНЛ для разговора о реальном взаимодействии между атомами, образующими кристалл.

Нам уже известно, что взаимодействие, т. е. конкуренция сил притяжения и отталкивания между атомами, обусловливает существование определенного расстояния l>0 между ними. Уточним наше понимание «взаимодействия», проследив зависимость энергии этого взаимодействия W от расстояния l между атомами. Качественно ясно, что, если бы нам удалось атомы удалить друг от друга на бесконечное расстояние, энергия их взаимодействия стала бы равной нулю. Попросту говоря, бесконечно удаленные атомы друг о друге не осведомлены и поэтому между собой не взаимодействуют. Качественно ясно, что, как бы мы ни старались насильно сблизить соседние атомы, совместить их мы никогда не cможем, а это означает, что по мере уменьшения расстояния между атомами до нуля энергия отталкивания между ними должна стремиться к бесконечности. Собственно, при очень большом сжимающем давлении атомы могут «раздавливаться». Именно это и происходит, когда под давлением в миллионы атмосфер кристалл водорода металлизируется: раздавленные атомы водорода свой «личный» электрон отдают в коллективное пользование.


Еще от автора Яков Евсеевич Гегузин
Капля

Книга состоит из отдельных очерков о физиче­ских законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.Книга иллюстрирована кадрами скоростной ки­носъемки и будет интересна самому широкому кругу читателей.


Рекомендуем почитать
Знание-сила, 2008 № 06 (972)

Ежемесячный научно-популярный и научно-художественный журнал.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.