Живой кристалл - [13]

Шрифт
Интервал

>1,2 равно расстоянию l>2,3, оказывается выгоднее любой «неупорядоченной», когда l>1,2 и l>2,3 не равны.

Решение этой задачи почти самоочевидно: сместить в одном и другом направлении второй атом из среднего положения, когда l>1,2 = l>2,3 — это значит растянуть одну пружинку и сжать другую. При этом энергия, запасенная в каждой из пружинок, возрастает, а это и означает, что расположение, соответствующее минимуму энергии, должно быть упорядоченным (l>1,2 = l>2,3!).

Теперь о происхождении беспорядка.

Вначале, не уточняя структуру очага беспорядка, можно утверждать: его появление обусловлено тем, что с повышением температуры увеличивается энергия теплового движения атомов, оно становится более активным и в разных участках кристалла нарушается идеальный порядок в расположении атомов. Казалось бы, ну и пусть себе движение становится более активным, а центры, вокруг которых происходят тепловые колебания атомов или ионов, могли бы оставаться на месте и порядок оставался бы порядком. Такое пожелание вроде бы ничему не противоречит, а, исполнись оно, порядок, как в стихотворных строках, на радость поэту, сохранился бы.

Наше интуитивное желание видеть в кристалле идеальный порядок, оказывается, противоречит законам природы. Не уверен, надо ли говорить «к сожалению», но противоречит. Дело здесь вот в чем. Для возникновения очага беспорядка — например, атом покинул свое законное место, которое он занимал в узле решетки, и перескочил в зазор между узлами, в междоузлие, — необходима некоторая энергия. В области будущего очага беспорядка она, заимствованная из энергии теплового движения атомов ближайшего окружения, может появиться случайно. Ближайшие атомы колеблются не строго согласованно, и случайное стечение обстоятельств может привести к такому перераспределению энергии их тепловых колебаний, при котором в области будущего очага беспорядка появится энергия, достаточная для рождения очага. Говорят так: появилась необходимая энергетическая флуктуация. С ростом температуры, когда активность теплового движения возрастает, должна возрастать и частота флуктуаций энергии, достаточной для возникновения очагов беспорядка, и, следовательно, концентрация очагов также должна расти.

Здесь необходимо подчеркнуть, что флуктуация в кристалле — эффект, как говорят, коллективный, в нем участвует группа атомов, а не только тот единственный, который, например, оказался выброшенным из узла в междоузлие. Просто именно он попал в область пика флуктуаций, а мог бы попасть и любой иной из коллектива атомов, оказавшихся в очаге флуктуаций.

Итак, и флуктуации энергии, и очаги беспорядка возникают самопроизвольно. Это, однако, не означает, что появление очагов беспорядка в кристалле сопровождается увеличением его энергии, ее удалением от требующегося термодинамикой минимума. Дело здесь вот в чем. Для того чтобы при повышенной температуре поддерживать в кристалле идеальный порядок (все атомы в узлах, все узлы заняты атомами!), надо было бы энергию тратить на то, чтобы гасить самопроизвольно возникающие энергетические флуктуации. Так вот, эта энергия, привнесенная в кристалл извне, делала бы его энергию заведомо неминимальной. А это и значит, что очаги беспорядка возникать будут просто потому, что не возникать они не могут. Они — условие существования кристалла при температуре, отличной от нуля. Они — непременный признак жизни кристалла.

Прочел написанное о термодинамической оправданности беспорядка и почувствовал, что, видимо, читателю нужны дополнительные разъяснения и примеры.

Примеры в научных доказательствах — вещь очень деликатная. Как известно, пример, согласующийся с утверждением, имеет силу лишь иллюстрации, а доказательной силы — никакой, а пример, противоречащий утверждению, имеет доказательную силу: он свидетельствует о том, что утверждение неверно. Скажем, полная корзина красных помидоров фактом своего существования не противоречит утверждению, «все помидоры красные», но и не доказывает его. А один зеленый помидор это утверждение начисто опровергает. И все же я приведу пример в надежде, что он поможет (!) читателю освоиться с мыслью о термодинамической оправданности беспорядка. Если средняя кинетическая энергия одной молекулы в идеальном газе kT/2, топ молекул имеют энергию пkT/2. Эта энергия не изменится, если объем газа увеличится, и, казалось бы, нет оправдания стремлению газа расширяться в пустоту. А между тем газ это самопроизвольно делает при первой же возможности. А оправдание есть и состоит оно в том, что, заняв большой объем, газ окажется в состоянии с большей степенью беспорядка, чем в малом объеме. И самопроизвольное возникновение беспорядка в кристалле, и самопроизвольное расширение газа в пустоту — следствия одной и той же термодинамически оправданной тенденции. Напомню: рассказанное — не доказательство, а всего лишь пример!

Коротко о структуре очагов беспорядка. Главным образом с точки зрения «прока» от них. В этом случае лучше вообще говорить не о структуре, а о величине энергетической флуктуации, необходимой для появления очага данного типа. Очевидно следующее: чем больше нарушение идеальной структуры кристалла в очаге, тем большая нужна флуктуация энергии и тем меньше таких очагов появится при данной температуре. Поэтому очаги значительного беспорядка (поры, трещины, границы) в кристалле самопроизвольно появляться не будут. В энергетических единицах они стоят дорог


Еще от автора Яков Евсеевич Гегузин
Капля

Книга состоит из отдельных очерков о физиче­ских законах, управляющих поведением капли, об ученых, которым капля помогла решить ряд сложных и важных задач в различных областях науки.Книга иллюстрирована кадрами скоростной ки­носъемки и будет интересна самому широкому кругу читателей.


Рекомендуем почитать
История девяти сюжетов

В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.


Как стать популярным автором

Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.


Тайны, догадки, прозрения

В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.


Интернет животных. Новый диалог между человеком и природой

Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».


Иван Александрович Стебут, 1833–1923

Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.


Знание-сила, 1998 № 03 (849)

Ежемесячный научно-популярный научно-художественный журнал для молодежи.