Живая математика. Математические рассказы и головоломки - [6]
Итак, при правильном дележе Пятеркина должна получить 70 коп., Тройкина - 10 коп.
3. На первый вопрос - через сколько дней в школе соберутся одновременно все 5 кружков - мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберется снова 5 кружков: политический - через 30 двухдневных промежутков, военный - через 20 трехдневных, фотокружок - через 15 четырехдневных, шахматный - через 12 пятидневок и хоровой - через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет еще через 60 дней, т. е. уже во втором квартале.
Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.
Труднее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы политкружка, т. е. числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы военного кружка: 4-й, 10-й и т. д. После того как зачеркнем затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачеркнутыми те дни первого квартала, когда ни один кружок не работал.
Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно 2, 8,12,14,18, 20, 24 и 30-го. В феврале насчитывается 7 таких дней, в марте - 9.
4. Оба насчитали одинаковое число прохожих. Хотя тот, кто стоял у ворот, считал проходивших в обе стороны, зато тот, кто ходил, видел вдвое больше встречных людей.
5. С первого взгляда может действительно показаться, что задача неправильно составлена: выходит как будто, что внук и дед одного возраста. Однако требование задачи, как сейчас увидим, легко удовлетворяется.
Внук, очевидно, родился в XX столетии. Первые две цифры года его рождения, следовательно, 19: таково число сотен. Число, выражаемое остальными цифрами, будучи сложено с самим собою, должно составить 32. Значит, это число 16: год рождения внука 1916, и ему в 1932 г. было 16 лет.
Дед его родился, конечно, в XIX столетии: первые две цифры года его рождения 18. Удвоенное число, выражаемое остальными цифрами, должно составить 132. Значит, само это число равно половине от 132, т. е. 66. Дед родился в 1866 г., и ему теперь 66 лет.
Таким образом, и внуку, и деду в 1932 г. столько лет, сколько выражают последние два числа годов их рождения.
6. На каждой из 25 станций пассажиры могут требовать билет до любой станции, т. е. на 24 пункта. Значит, разных билетов надо напечатать 25 х 24 = 600 образцов.
7. Задача эта никакого противоречия не содержит. Не следует думать, что дирижабль летел по контуру квадрата: надо принять в расчет шарообразную форму Земли. Дело в том, что меридианы к северу сближаются (рис. 6); поэтому, пройдя 500 км по параллельному кругу, расположенному на 500 км севернее широты Ленинграда, дирижабль отошел к востоку на большее число градусов, чем пролетел потом в обратном направлении, очутившись снова на широте Ленинграда. В результате дирижабль, закончив полет, оказался восточнее Ленинграда.
На сколько именно? Это можно рассчитать. На рис. 6 вы видите маршрут дирижабля: ABCDE. Точка N- северный полюс; в этой точке сходятся меридианы АВ и DC. Дирижабль пролетел сначала 500 км на север, т. е. по меридиану AN. Так как длина градуса меридиана 111 км, то дуга меридиана в 500 км содержит 500:111 = 4,5°. Ленинград лежит на 60-й параллели; значит, точка В находится на 60° + 4,5° = 64,5°. Затем дирижабль летел к востоку, т. е. по параллели ВС, и прошел по ней 500 км.
Рис. 6. Как летел дирижабль задачи 7
Длину одного градуса на этой параллели можно вычислить (или узнать из таблиц); она равна 48 км. Отсюда легко определить, сколько градусов пролетел дирижабль на восток: 500: 48 = 10,4°. Далее воздушный корабль летел в южном направлении, т. е. по меридиану CD, и, пройдя 500 км, должен был очутиться снова на параллели Ленинграда. Теперь путь лежит на запад, т. е. по DA; 500 км этого пути явно короче расстояния AD. В расстоянии AD заключается столько же градусов, сколько и в ВС, т. е. 10,4°. Но длина 1° на широте 60° равна 55,5 км. Следовательно, между А и D расстояние равно 55,5 х 10,4 = 577,2 км. Мы видим, что дирижабль не мог спуститься в Ленинграде; он не долетел до него 77 км, т. е. спустился на Ладожском озере.
8. Беседовавшие об этой задаче допустили ряд ошибок. Неверно, что лучи солнца, падающие на земной шар, заметно расходятся. Земля так мала по сравнению с расстоянием ее от солнца, что солнечные лучи, падающие на какую-либо часть ее поверхности, расходятся на неуловимо малый угол: практически лучи эти можно считать параллельными. То, что мы видим иногда при так называемом «иззаоблачном сиянии» (рис. 5 - лучи солнца, расходящиеся веером), - не более как следствие перспективы.
В перспективе параллельные линии представляются сходящимися; вспомните вид уходящих вдаль рельсов
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Как происходит дыхание? Почему нам порой не хватает воздуха и какое отношение имеет к этому маленькая Русалочка? Как наши эмоции влияют на дыхание? Почему мы кашляем, но не чувствуем боли в дыхательных путях? Может ли вырасти новое легкое? Как самый большой орган нашего тела защищается от микробов и вредных веществ. И самое главное: что мы можем предпринять, чтобы этот чудесный орган сохранял свою работоспособность всю жизнь? Обо всем этом увлекательно и захватывающе повествует специалист по легким Кай-Михаэль Бе. Для широкого круга читателей.
Книга основателя Игнобелевской (Шнобелевской) премии — сборник эссе о самых разных исследованиях вполне почтенных ученых. Только вот предмет этих исследований заставляет читателей сначала рассмеяться, а потом задуматься о весьма серьезных вещах. Почему чаще всего крадут книги по этике? Как найти оптимальный способ нарезки ветчины с помощью математики? Отчего танцоры в Вегасе получают большие чаевые в определенные месяцы? И какое ухо лучше распознает ложь — правое или левое? Абрахамс рассказывает о подобных довольно странных исследованиях в области биологии, физики, математики и других наук с большим юмором, иронией и — глубоким знанием человеческой природы.
Книга рассказывает о поразительных явлениях на водных пространствах нашей планеты. Существуют ли подводные чудовища, гигантские кальмары и змеи, 20-тонные медузы? Каково их происхождение? Почему этих тварей так редко видят? Это лишь небольшая часть вопросов, затронутых в книге.
Зарождение и развитие капитализма сопровождалось как его циклическими кризисами, так и его возрождениями в новых обличьях. Однако в реалиях XXI века капиталистическая система, по мнению Пола Мейсона, более не способна адаптироваться к новым вызовам, что означает ее фактический крах. Раз так, то главный вопрос: каким может быть будущее, если капиталистические перспективы неутешительны? Есть ли шанс создать новую стабильную и социально ориентированную глобальную финансовую систему? В своем исследовании Пол Мейсон в качестве альтернативы предлагает модель «посткапитализма», основы которой можно найти в современной экономической системе, и они даже сосуществуют с ней.
«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».
О пути, который прошла Русь на протяжении XIII–XV веков, от политической раздробленности накануне татаро-монгольского нашествия до победы в Куликовской битве и создания централизованного Русского государства, рассказывают доктор исторических наук И. Б. Греков и писатель Ф. Ф. Шахмагонов. Виктор Иванович Буганов — известный советский ученый, доктор исторических наук, заведующий отделом источниковедения Института истории СССР Академии наук СССР. Его перу принадлежит более 300 научных работ, в том числе пять монографий, и научно-популярные книги.