Жидкости - [7]
Долго так продолжаться не могло, но потребность во внутреннем освещении по-прежнему росла. Население увеличивалось и богатело, всё большее значение придавалось образованию, культура чтения и развлечений после наступления темноты входила в массы, так что спрос на масла только рос. Одновременно усиливалось и давление на изобретателей и ученых, которые должны были предложить способ удовлетворения этой потребности. Среди них был и Джеймс Янг, шотландский химик, который в 1848 г. нашел способ получения из угля жидкости, прекрасно подходившей для лампы. Он назвал ее парафиновым маслом. Канадский изобретатель Авраам Геснер проделал то же и назвал свою жидкость керосином. Эти открытия могли и не привести к серьезным результатам, однако сделаны они были перед самым началом Гражданской войны в Америке. Китобойные суда стали мишенью для военных кораблей, а налоги на другие виды ламповых масел дали керосиновой промышленности удачную возможность для старта. Однако реальный прорыв произошел только тогда, когда изобретатели начали возиться не с углем, а с сырой нефтью, которую можно было обнаружить возле угольных шахт. Ее приходилось выкачивать из земли, это черная, пахучая, липкая субстанция. Но, прежде чем ее применить, пришлось освоить дистилляцию — старый фокус, впервые использованный еще ар-Рази и оказавшийся чрезвычайно выгодным. Теперь джинна действительно выпустили из бутылки.
Тем временем на борту моего самолета по-прежнему не было сказано ни слова о керосине. Инструктаж по безопасности дошел до пункта об аварийных выходах, и один из проводников встал в проходе и развел руки с растопыренными пальцами, указывая нам их расположение. Мне сказали, что позади меня два таких выхода, и впереди два, и еще два над крыльями. Мне хотелось добавить: «А еще 50 000 литров керосина в баке у нас под ногами и по столько же в каждом из крыльев лайнера». Должно быть, я пробормотал что-то себе под нос, поскольку привлек внимание соседки, которую, как я позже выяснил, звали Сьюзен. Впервые после посадки в самолет она подняла голову от книги. На мгновение она встретилась со мной глазами поверх очков в красной оправе, затем вернулась к чтению. Ее взгляд хотя и длился меньше секунды, но успел сказать мне очень многое. Он говорил: «Расслабьтесь. Самолет — самое безопасное средство перемещения на большие расстояния. Знаете ли вы, что каждый день больше миллиона людей летает в стратосфере и шансы на то, что произойдет что-то плохое, мизерные? Нет, даже меньше. Сядьте поудобнее. Расслабьтесь. Почитайте книгу». Я понимаю, что здесь очень много информации для передачи взглядом, но поверьте мне, ее короткий взгляд сказал мне всё это.
Нефтеперегонный завод; высокие колонны — дистилляционные сосуды. © Kyle Pearce
К счастью или нет, но я не мог думать ни о чем, кроме керосина — и замечательного фокуса, который изобретатели середины XIX в. использовали для переработки сырой нефти: метода перегонки. Ар-Рази для этого применял аппарат, известный как аламбик, — примерно то же, что мы сегодня называем дистилляционными, или ректификационными, сосудами. Это те самые колонны, которые торчат вверх из всех нефтеперегонных заводов.
Сырая нефть — смесь углеводородных молекул различной формы: и длинных, как спагетти, и более компактных, и замкнутых в кольца. Хребет каждой такой молекулы состоит из атомов углерода, связанных последовательно в цепочку. С каждым атомом углерода связаны также два атома водорода, при этом есть множество вариантов молекул, различающихся формой и размерами: атомов углерода в молекуле может быть от пяти до нескольких сотен штук. Молекул с числом атомов углерода меньше пяти очень мало, потому что они склонны существовать в форме газов: это метан, этан и бутан. Чем длиннее молекула, тем выше температура кипения вещества — и вероятность того, что при комнатной температуре оно будет жидкостью. Это верно для углеводородных молекул с числом атомов углерода примерно до сорока. Если молекула еще больше, то она практически не может плавать, и вещество становится смолой.
Смесь углеводородных молекул в составе сырой нефти (показаны только атомы углерода)
При перегонке сырой нефти первыми выделяются самые маленькие молекулы. Молекулы углеводорода с числом атомов углерода от пяти до восьми образуют светлую прозрачную и чрезвычайно горючую жидкость. Точка возгорания для нее равна –45 °C, то есть даже при минусовых температурах она легко вспыхивает. Так легко, что заливать ее в масляную лампу опасно. Поэтому в самом начале развития нефтяной промышленности эту жидкость считали отходом производства и выбрасывали. Позже, когда мы лучше разобрались в ее достоинствах, мы ее оценили — особенно за то, что, если ее смешать с воздухом и поджечь, она дает достаточно горячего газа, чтобы двигать поршень машины. Позже ее назвали бензином и начали использовать как топливо для двигателей внутреннего сгорания.
Более крупные молекулы с числом атомов углерода 9–21 образуют прозрачную светлую жидкость с более высокой температурой кипения. Она испаряется медленно, ее не так просто поджечь. Но поскольку каждая молекула в ней довольно велика, если реакция с кислородом всё же возникает, энергии в ней выделяется много, причем в виде горячего газа. Однако жидкость не загорится, если ее не впрыснуть в воздух; кроме того, ее можно сжать до высокой плотности, прежде чем она самопроизвольно вспыхнет. Именно этот принцип открыл в 1897 г. Рудольф Дизель, имя которого в итоге получила жидкость, ставшая основой его грандиозного изобретения — самого успешного двигателя XX столетия.

Профессор Лондонского университета Марк Медовник сделал почти невозможную вещь – написал не только доступную, но и остроумную книгу о самых разных материалах – своего рода «Занимательное материаловедение». Рассказ о новых химических соединениях, вдумчивый сравнительный анализ винных бокалов, сталь самурайских мечей, композитные материалы для трансплантации, бетонные конструкции суперсовременных аэропортов – обо всем этом автор пишет с блеском и глубоким знанием предмета. Книга «Из чего это сделано» – превосходный образец популярной науки высочайшего уровня, настоящая находка для любознательного читателя.

Представленные в книге материалы, имеющие характер слабо формализованного изложения, содержат рассуждения об отдельных сторонах и моментах существования как автономных субъектов, так и объединений субъектов от небольших сообществ до Общества. Книга вполне может представлять интерес как для специалистов в вопросах функционирования систем, так и для любопытствующих.

За последние 500 миллионов лет Земля претерпела пять массовых вымираний биологических видов. Прямо сейчас происходит Шестое вымирание, и на этот раз оно вызвано исключительно деятельностью человека. Штатный сотрудник журнала The New Yorker, Элизабет Колберт проследила истории нескольких видов, уже безвозвратно исчезнувших и еще живущих рядом с нами, побывав в разных уголках земного шара и побеседовав с ведущими учеными. Почему деятельность человека столь разрушительна для других биологических видов? В силах ли мы остановить Шестое вымирание?

В монографии исследуются эволюция капиталистического отчуждения труда в течение последних ста лет, возникновение новых форм отчуждения, влияние растущего отчуждения на развитие образования, науки, культуры, личности. Исследование основывается на материалах философских, социологических и исторических работ.

История нашего вида сложилась бы совсем по другому, если бы не счастливая генетическая мутация, которая позволила нашим организмам расщеплять алкоголь. С тех пор человек не расстается с бутылкой — тысячелетиями выпивка дарила людям радость и утешение, помогала разговаривать с богами и создавать культуру. «Краткая история пьянства» — это история давнего романа Homo sapiens с алкоголем. В каждой эпохе — от каменного века до времен сухого закона — мы найдем ответы на конкретные вопросы: что пили? сколько? кто и в каком составе? А главное — зачем и по какому поводу? Попутно мы познакомимся с шаманами неолита, превратившими спиртное в канал общения с предками, поприсутствуем на пирах древних греков и римлян и выясним, чем настоящие салуны Дикого Запада отличались от голливудских. Это история человечества в его самом счастливом состоянии — навеселе.

Книга посвящена первой успешной вооруженной революции в Латинской Америке после кубинской – Сандинистской революции в Никарагуа, победившей в июле 1979 года.В книге дан краткий очерк истории Никарагуа, подробно описана борьба генерала Аугусто Сандино против американской оккупации в 1927–1933 годах. Анализируется военная и экономическая политика диктатуры клана Сомосы (1936–1979 годы), позволившая ей так долго и эффективно подавлять народное недовольство. Особое внимание уделяется роли США в укреплении режима Сомосы, а также истории Сандинистского фронта национального освобождения (СФНО) – той силы, которая в итоге смогла победоносно завершить революцию.

В монографии рассматривается институт лишения свободы как родовое понятие и виды наказания, связанные с изоляцией осужденного от общества.В настоящей работе предпринята попытка теоретико-правового конструирования видов лишения свободы: тюремного заключения на срок или бессрочно; содержание в исправительной колонии открытого типа для отбывания заключительного этапа тюремного заключения; содержания в воспитательном центре несовершеннолетних заключенных.Для студентов, аспирантов, профессорско-преподавательского состава юридических ВУЗов, научных сотрудников, исследующих современные проблемы уголовного наказания.