Жидкости - [7]
Долго так продолжаться не могло, но потребность во внутреннем освещении по-прежнему росла. Население увеличивалось и богатело, всё большее значение придавалось образованию, культура чтения и развлечений после наступления темноты входила в массы, так что спрос на масла только рос. Одновременно усиливалось и давление на изобретателей и ученых, которые должны были предложить способ удовлетворения этой потребности. Среди них был и Джеймс Янг, шотландский химик, который в 1848 г. нашел способ получения из угля жидкости, прекрасно подходившей для лампы. Он назвал ее парафиновым маслом. Канадский изобретатель Авраам Геснер проделал то же и назвал свою жидкость керосином. Эти открытия могли и не привести к серьезным результатам, однако сделаны они были перед самым началом Гражданской войны в Америке. Китобойные суда стали мишенью для военных кораблей, а налоги на другие виды ламповых масел дали керосиновой промышленности удачную возможность для старта. Однако реальный прорыв произошел только тогда, когда изобретатели начали возиться не с углем, а с сырой нефтью, которую можно было обнаружить возле угольных шахт. Ее приходилось выкачивать из земли, это черная, пахучая, липкая субстанция. Но, прежде чем ее применить, пришлось освоить дистилляцию — старый фокус, впервые использованный еще ар-Рази и оказавшийся чрезвычайно выгодным. Теперь джинна действительно выпустили из бутылки.
Тем временем на борту моего самолета по-прежнему не было сказано ни слова о керосине. Инструктаж по безопасности дошел до пункта об аварийных выходах, и один из проводников встал в проходе и развел руки с растопыренными пальцами, указывая нам их расположение. Мне сказали, что позади меня два таких выхода, и впереди два, и еще два над крыльями. Мне хотелось добавить: «А еще 50 000 литров керосина в баке у нас под ногами и по столько же в каждом из крыльев лайнера». Должно быть, я пробормотал что-то себе под нос, поскольку привлек внимание соседки, которую, как я позже выяснил, звали Сьюзен. Впервые после посадки в самолет она подняла голову от книги. На мгновение она встретилась со мной глазами поверх очков в красной оправе, затем вернулась к чтению. Ее взгляд хотя и длился меньше секунды, но успел сказать мне очень многое. Он говорил: «Расслабьтесь. Самолет — самое безопасное средство перемещения на большие расстояния. Знаете ли вы, что каждый день больше миллиона людей летает в стратосфере и шансы на то, что произойдет что-то плохое, мизерные? Нет, даже меньше. Сядьте поудобнее. Расслабьтесь. Почитайте книгу». Я понимаю, что здесь очень много информации для передачи взглядом, но поверьте мне, ее короткий взгляд сказал мне всё это.
Нефтеперегонный завод; высокие колонны — дистилляционные сосуды. © Kyle Pearce
К счастью или нет, но я не мог думать ни о чем, кроме керосина — и замечательного фокуса, который изобретатели середины XIX в. использовали для переработки сырой нефти: метода перегонки. Ар-Рази для этого применял аппарат, известный как аламбик, — примерно то же, что мы сегодня называем дистилляционными, или ректификационными, сосудами. Это те самые колонны, которые торчат вверх из всех нефтеперегонных заводов.
Сырая нефть — смесь углеводородных молекул различной формы: и длинных, как спагетти, и более компактных, и замкнутых в кольца. Хребет каждой такой молекулы состоит из атомов углерода, связанных последовательно в цепочку. С каждым атомом углерода связаны также два атома водорода, при этом есть множество вариантов молекул, различающихся формой и размерами: атомов углерода в молекуле может быть от пяти до нескольких сотен штук. Молекул с числом атомов углерода меньше пяти очень мало, потому что они склонны существовать в форме газов: это метан, этан и бутан. Чем длиннее молекула, тем выше температура кипения вещества — и вероятность того, что при комнатной температуре оно будет жидкостью. Это верно для углеводородных молекул с числом атомов углерода примерно до сорока. Если молекула еще больше, то она практически не может плавать, и вещество становится смолой.
Смесь углеводородных молекул в составе сырой нефти (показаны только атомы углерода)
При перегонке сырой нефти первыми выделяются самые маленькие молекулы. Молекулы углеводорода с числом атомов углерода от пяти до восьми образуют светлую прозрачную и чрезвычайно горючую жидкость. Точка возгорания для нее равна –45 °C, то есть даже при минусовых температурах она легко вспыхивает. Так легко, что заливать ее в масляную лампу опасно. Поэтому в самом начале развития нефтяной промышленности эту жидкость считали отходом производства и выбрасывали. Позже, когда мы лучше разобрались в ее достоинствах, мы ее оценили — особенно за то, что, если ее смешать с воздухом и поджечь, она дает достаточно горячего газа, чтобы двигать поршень машины. Позже ее назвали бензином и начали использовать как топливо для двигателей внутреннего сгорания.
Более крупные молекулы с числом атомов углерода 9–21 образуют прозрачную светлую жидкость с более высокой температурой кипения. Она испаряется медленно, ее не так просто поджечь. Но поскольку каждая молекула в ней довольно велика, если реакция с кислородом всё же возникает, энергии в ней выделяется много, причем в виде горячего газа. Однако жидкость не загорится, если ее не впрыснуть в воздух; кроме того, ее можно сжать до высокой плотности, прежде чем она самопроизвольно вспыхнет. Именно этот принцип открыл в 1897 г. Рудольф Дизель, имя которого в итоге получила жидкость, ставшая основой его грандиозного изобретения — самого успешного двигателя XX столетия.
Профессор Лондонского университета Марк Медовник сделал почти невозможную вещь – написал не только доступную, но и остроумную книгу о самых разных материалах – своего рода «Занимательное материаловедение». Рассказ о новых химических соединениях, вдумчивый сравнительный анализ винных бокалов, сталь самурайских мечей, композитные материалы для трансплантации, бетонные конструкции суперсовременных аэропортов – обо всем этом автор пишет с блеском и глубоким знанием предмета. Книга «Из чего это сделано» – превосходный образец популярной науки высочайшего уровня, настоящая находка для любознательного читателя.
Перед вами первое подробное исследование норм жизни населения России после Второй мировой войны. Рассматриваются условия жизни в городе в период сталинского режима. Основное внимание уделяется таким ключевым вопросам, как санитария, доступ к безопасному водоснабжению, личная гигиена и эпидемический контроль, рацион, питание и детская смертность. Автор сравнивает условия жизни в пяти ключевых промышленных районах и показывает, что СССР отставал от существующих на тот момент норм в западно-европейских странах на 30-50 лет.
В книге воспоминаний заслуженного деятеля науки РФ, почетного профессора СПбГУ Л. И. Селезнева рассказывается о его довоенном и блокадном детстве, первой любви, дипломатической работе и службе в университете. За кратким повествованием, в котором отражены наиболее яркие страницы личной жизни, ощутимо дыхание целой страны, ее забот при Сталине, Хрущеве, Брежневе… Книга адресована широкому кругу читателей.
Содержание антологии составляют переводы автобиографических текстов, снабженные комментариями об их авторах. Некоторые из этих авторов хорошо известны читателям (Аврелий Августин, Мишель Монтень, Жан-Жак Руссо), но с большинством из них читатели встретятся впервые. Книга включает также введение, анализирующее «автобиографический поворот» в истории детства, вводные статьи к каждой из частей, рассматривающие особенности рассказов о детстве в разные эпохи, и краткое заключение, в котором отмечается появление принципиально новых представлений о детстве в начале XIX века.
Монография впервые в отечественной и зарубежной историографии представляет в системном и обобщенном виде историю изучения восточных языков в русской императорской армии. В работе на основе широкого круга архивных документов, многие из которых впервые вводятся в научный оборот, рассматриваются вопросы эволюции системы военно-востоковедного образования в России, реконструируется история военно-учебных заведений лингвистического профиля, их учебная и научная деятельность. Значительное место в работе отводится деятельности выпускников военно-востоковедных учебных заведений, их вкладу в развитие в России общего и военного востоковедения.
Как цикады выживают при температуре до +46 °С? Знают ли колибри, пускаясь в путь через воды Мексиканского залива, что им предстоит провести в полете без посадки около 17 часов? Почему ветви некоторых деревьев перестают удлиняться к середине июня, хотя впереди еще почти три месяца лета, но лозы и побеги на пнях продолжают интенсивно расти? Известный американский натуралист Бернд Хайнрих описывает сложные механизмы взаимодействия животных и растений с окружающей средой и различные стратегии их поведения в летний период.
Немногие культуры древности вызывают столько же интереса, как культура викингов. Всего за три столетия, примерно с 750 по 1050 год, народы Скандинавии преобразили северный мир, и последствия этого ощущаются до сих пор. Викинги изменили политическую и культурную карту Европы, придали новую форму торговле, экономике, поселениям и конфликтам, распространив их от Восточного побережья Америки до азиатских степей. Кроме агрессии, набегов и грабежей скандинавы приносили землям, которые открывали, и народам, с которыми сталкивались, новые идеи, технологии, убеждения и обычаи.