Жар холодных числ и пафос бесстрастной логики - [44]

Шрифт
Интервал

В статье, в которой доказывалась теорема о неполноте формальной арифметики, Гёдель исследует систему формальной арифметики Principia Mathematica (он называет эту аксиоматически-дедуктивную теорию «системой PM»). Начинает он свою статью следующими словами: «Развитие математики в направлении все увеличивающейся строгости привело, как известно, к формализации многих ее частей, так что стало возможным доказывать теоремы, не пользуясь ничем, кроме нескольких механических правил. Наиболее широкие формальные системы, построенные к настоящему времени, это, с одной стороны, система Principia Mathematica (РМ) и, с другой стороны, система аксиом Цермело—Френкеля для теории множеств (развитая в дальнейшей Дж. фон Нейманом).

Обе эти системы настолько широки, что все методы доказательства, применяемые ныне в математике, в них формализованы, то есть сведены к небольшому числу аксиом и правил вывода. Поэтому можно предположить, что этих аксиом и правил вывода окажется достаточным, чтобы получить ответ на любой математический вопрос, который вообще может быть формально выражен в этих системах. Ниже будет показано, что это не так, что, наоборот, в обеих упомянутых системах имеются проблемы даже относительно простые, относящиеся к теории обычных целых чисел, которые нельзя решить, исходя из аксиом. Это обстоятельство не связано с какой-то специфической природой этих систем, напротив, оно имеет силу для очень широкого класса формальных систем, к которым, в частности, принадлежат все системы, получающиеся из упомянутых двух посредством присоединения к ним конечного числа аксиом, если только это присоединение не приводит к тому, что доказуемым становится какое-либо ложное предложение»[2].

Далее Гёдель излагает формальную систему, эквивалентную РМ, вводя только несущественные модификации, которые должны облегчить доказательство теоремы. Как и во всяком формальном исчислении, в основе этой системы лежат: перечень основных символов, определение комбинаций символов, называемой формулой, список постулатов — аксиом и правил вывода. С характером этих понятий читатель уже знаком, и нам остается рассказать о том, каким образом у Гёделя вводятся натуральные числа.

Это делается так: вводится символ для числа «нуль» (0), а также символ «следования за» f, который трактуется так, что f0 есть единица, ff0 — два и т. д.

Но для целей, которые преследует Гёдель, недостаточно иметь лишь символы для логических операций и чисел. Нужно выразить также основные арифметические предикаты, такие, как «простое число», «делится нацело» и т. п. В этом месте Гёдель, используя понятия системы РМ и известную в математике процедуру рекурсивного задания функции, то есть задания новых значений функции через предыдущие (рекурсивно, например, определяется функция «факториал» — произведение всех натуральных чисел от единицы до данного числа: (1)0! = 1; (2) (n+ 1)! = (n!) (n + 1)), вводит понятие рекурсивной функции, которое заведомо выразимо средствами формальной арифметики. Делается это так: задаются исходные рекурсивные функции — константа 0 и функция «следования за» — а затем устанавливается способ, с помощью которого из них можно получать более сложные рекурсивные функции. В самом начале этой части работы Гёдель показывает, что такие важные функции, как сложение, умножение и возведение в степень, рекурсивны. Он определяет также понятие рекурсивного арифметического предиката; n-местным арифметическим рекурсивным предикатом (отношением между n числами) называется такой предикат, который определяется уравнением φ (х1, х2,..., хn) = 0, где φ—рекурсивная функция, а х1, х2, ..., >Хn — переменные для чисел. Примером рекурсивного предиката является двуместный предикат «меньше». Рассмотрим этот случай подробнее, так как в дальнейшем нам понадобится представление о рекурсивных функциях и предикатах.

1. Функция δ, определяемая условиями

а) δ(0)=0, б) δ(у+1)= y,

рекурсивна, как выраженная стандартной схемой рекурсии через исходные рекурсивные функции (здесь прибавление единицы к числу следует понимать как взятие следующего числа в натуральном ряду).

2. Функция х ∸ у, определяемая условиями

а) х ∸ О = х, б) х ∸ (у+1)=δ(х ∸ у),

рекурсивна, как выраженная стандартной схемой рекурсии через рекурсивную функцию δ. Как нетрудно убедиться, смысл функции х ∸ у (она называется усеченным вычитанием) таков: функция эта равна х — у, если х >= у и равна нулю, если х < у.

В самом деле, посмотрим, каково значение функции х ∸ у для х, у = 0, 1, 2, 3 (над знаками равенств помечаем какой пункт определений 1, 2 применяется или какое из ранее полученных значений функции х — у используется):



Подобным же образом вычисляется 0∸3=0,0∸4=0 (вообще, легко усматривается, что при дальнейшем возрастании значения у выражение 0 ∸ у будет оставаться равным нулю).

При дальнейшем возрастании значения y выражение 2 ∸ у становится равным нулю. Аналогично вычисляется, что 3 ∸ 0 = 3, 3 ∸ 1 = 2, 3 ∸ 2 = 1, но при y > 2 выражение 3 ∸ y равно нулю.

3. Предикат, опередляемый уравнением х ∸ у = 0, рекурсивен; это очевидно, поскольку функция х ∸ у, как мы показали, рекурсивна. Но смысл этого предиката выражается в обычном языке утверждением x <= у.


Еще от автора Борис Владимирович Бирюков
Теория смысла Готлоба Фреге

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Социальная мифология, мыслительный дискурс и русская культура

Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).


Быть русскими — наша судьба

Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.


Понимаем ли мы Евангелие?

Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.


Трактат о любви. Духовные таинства

Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.


А может  быть, вы  математик?

Опубликовано в журнале «Юность» № 12 (163), 1968Раздел «Наука и техника».


Рекомендуем почитать
Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Время переменных. Математический анализ в безумном мире

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения. Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.