Жар холодных числ и пафос бесстрастной логики - [19]

Шрифт
Интервал

С математической точки зрения достижение Буля представляло собой такую же крупную и революционную вещь, как и изобретения Лобачевского и Гамильтона. Он создал новый вид алгебры, и этим внес значительный вклад в ту переоценку места математики, о которой было сказано выше. Надо заметить, что сам Буль, как можно предполагать по некоторым данным, понимал глубокое значение своего исследования. Алгебра, построенная Булем, служила ему для описания операций над множествами и действий над высказываниями. Впоследствии выяснилось, что, следуя Булю, возможно создание аппарата, описывающего свойства важного класса релейных схем, изучаемых в автоматике. Поэтому восходящая к Булю алгебра не должна рассматриваться только как алгебра логики.

Система Буля, если смотреть на нее с современной точки зрения, есть просто некая абстрактная математическая система. Что это значит? Ответим на этот вопрос в духе принятого сейчас понимания: это значит, что ее можно задать, указав некоторый алфавит (перечень символов), правила образования выражений, объявляемых «правильно построенными», и методы отыскания среди правильно построенных выражений тех из них, которые признаются «истинными» (верными, доказанными), теорем системы. Что же касается вопроса о содержании правильно построенных выражений и теорем, то это — вопрос, относящийся уже не к самой системе, а к ее интерпретации (истолкованию), каковая может быть не единственной.

Станем на путь, обрисованный только что в самых общих чертах, и зададим некоторую формальную систему, идейно примыкающую к алгебре, которую создал Буль. В соответствии с современными представлениями мы будем смотреть на эту систему поначалу как на чисто формальный аппарат, не предполагающий у фигурирующих в нем объектов (знаковых конструкций) какого-либо «внешнего» содержания (использование формального аппарата для вывода «истинных» выражений похоже на игру со знаками, подчиненную определенным правилам). Затем мы дадим четыре интерпретации, в результате которых формально введенные объекты будут наделяться «внешним» по отношению к аппарату смыслом — для каждой интерпретации своим. Далее будет сформулировано понятие булевой алгебры и обнаружится, что в каждой из упомянутых интерпретаций содержится булева алгебра. Обращаем внимание на то, что все это изложение не преследует цели демонстрации реальной картины исторического становления математической логики. Наше изложение существенно осовременено уже потому, что, как мы покажем далее, в «математическом анализе логики» Буля булевой алгебры в собственном смысле этого слова не было, хотя он и стоит у истоков последней.

I. Алфавит. Вводятся в рассмотрение знаки пяти видов: пропозициональные переменные, константы, логические связки (знаки логических операций), знак отношения и скобки.

а) Пропозициональные переменные: A1 A2, A3, ...; число пропозициональных переменных не ограничено.

б) Константы: 0, 1.

в) Логические связки: ~, &, V (эти знаки носят название соответственно отрицания, конъюнкции и дизъюнкции).

( ~ = ˥)

г) Знак отношения: = (знак равенства).

д) Скобки: (,) (левая и правая).

Других знаков алфавит не содержит.

Исчисление строится так, что не всякая конечная последовательность знаков его алфавита является формулой. Формулы — это такие последовательности знаков алфавита (или, как говорят иначе, такие выражения или слова в алфавите), которые удовлетворяют следующему определению.

II. Формулы.

(а) Каждая пропозициональная переменная есть формула.

(б) Константы 0 и 1 суть формулы.

(в) Если α — формула, то ~α —тоже формула; если α и β — формулы, то (α & β) и (α V β) также являются формулами[3].

(г) Других формул, кроме получаемых по правилам (а), (б) и (в), быть не может.

В этом определении в пункте (в) буквы α и β, не принадлежащие нашему алфавиту (и потому называемые метазнаками[4]), означают произвольные конечные последовательности знаков алфавита.

Данное выше определение формул называется индуктивным. Индуктивные определения широко распространены в современной математике, логике, основаниях математики. Они позволяют вполне точно устанавливать, подпадает ли любой данный объект некоторой области под определяемое понятие. Сформулированное выше определение дает возможность установить, является ли любое данное слово нашего алфавита формулой или нет — установить это, «идя обратным ходом» и рано или поздно добираясь до пропозициональных переменных или констант (если слово окажется формулой).

Ознакомимся подробнее с тем, как «работает» данное определение. Докажем, например, что слово (A1 & ~(A2 V A1) не есть формула. Предположим противное: это слово — формула. Тогда знак & мог возникнуть в ней лишь в результате применения пункта (в) определения формулы. Но это значит, что A1 и ~(А2 V А1 должны быть формулами. Однако хотя А1 и есть формула (по пункту (а) определения), слово ~(A2 V A1 формулой не является, ибо для того, чтобы слово, начинающееся со знака ~, было формулой, необходимо, чтобы справа от него стояла формула. Но слово (A2 V A1 не представляет собой формулы, так как оно могло бы быть формулой только по пункту (в), но тогда в нем крайним справа знаком должна была бы быть правая скобка, чего в действительности нет. Таким образом, (А2 V А1 — не формула, а значит, ~(A2 V A1 не формула и, следовательно, исследуемое выражение в целом — не формула. Однако если бы мы рассмотрели, скажем, слово (А1 & (A2 V A1)), то применяя аналогичное рассуждение, убедились бы, что оно является формулой.


Еще от автора Борис Владимирович Бирюков
Теория смысла Готлоба Фреге

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Социальная мифология, мыслительный дискурс и русская культура

Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).


Быть русскими — наша судьба

Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.


Вера и разум. Европейская философия и ее вклад в познание истины

Автор книги – известный религиозный философ – стремится показать, насколько простая, глубокая и ясная вещь «настоящая философия» – не заказанное напористой и самоуверенной протестантской цивилизацией её теоретическое оправдание, а честное искание Истины – и как нужна такая философия тем русским людям, которые по своей натуре нуждаются в укреплении веры доводами разума.В форме увлекательных бесед показаны не только высоты и бездны европейской философии, но и значительные достижения русской философской школы, уходящей своими корнями в православное мировосприятие.


Понимаем ли мы Евангелие?

Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.


Трактат о любви. Духовные таинства

Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.