Занимательно о химии - [18]
Все металлы — вещества твердые, твердые в той или иной степени. Это общее правило. Однако есть исключения.
Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезия легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.
В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.
Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома). то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?
Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.
Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.
Какое первое химическое соединение сознательно получил человек?
Историки науки не могут ответить с полной определенностью.
Мы рискнем сделать собственное предположение.
Первым веществом, которое люди приготовляли, заранее зная, что они хотят получить, было… соединение двух металлов — меди и олова. Мы сознательно не употребили слово «химическое». Потому что соединение меди и олова (а это самая обыкновенная, всем известная бронза) необычное. Оно называется сплавом.
Древние люди научились сначала выплавлять металлы из их руд, а уже затем сплавлять друг с другом.
Так на заре цивилизации появились зерна одной из отраслей будущей науки химии. Ее называют теперь металлохимия, или химия металлов.
Строение соединений металлов с неметаллами обычно определяется валентностью входящих в них элементов. Скажем, в молекуле поваренной соли содержится положительно одновалентный натрий и отрицательно одновалентный хлор. В молекуле аммиака NH>3 отрицательно трехвалентный азот связан с тремя положительно одновалентными атомами водорода.
Химические соединения металлов друг с другом (их называют интерметаллическими соединениями) законам валентности обычно не подчиняются. Их состав не связан с валентностью реагирующих элементов. Поэтому формулы интерметаллических соединений выглядят довольно странно, например MgZn>5, KCd>7, NaZn>12 и так далее. Одна и та же пара металлов часто может образовывать несколько интерметаллических продуктов, скажем, натрий с оловом дают девять таких удивительных образований.
Металлы могут взаимодействовать между собой, как правило, в расплавленном состоянии. Но не всегда сплавляемые металлы образуют друг с другом химические соединения. Иногда один металл просто растворяется в другом. Образуется однородная смесь неопределенного состава, ее не удается выразить четкой химической формулой. Такую смесь именуют твердым раствором.
Сплавов огромное количество. И никто еще не взял на себя труд хотя бы приблизительно подсчитать, сколько их уже известно и сколько вообще может быть получено. Здесь снова «пахнет» миллионами, как в мире органических соединений.
Известны сплавы, состоящие из доброго десятка металлов, и каждая новая добавка по-своему влияет на свойства. Известны сплавы из двух металлов — биметаллические, но в зависимости от того, сколько какого компонента взято, свойства будут различными.
Одни металлы сплавляются очень легко и в любой пропорции. Таковы бронза и латунь (сплав меди с цинком). Другие ни при каких условиях не желают сплавляться, например медь с вольфрамом. Ученые все же приготовили их сплав, но необычным путем, методом так называемой порошковой металлургии: спеканием медного и вольфрамового порошка под давлением.
Существуют сплавы жидкие при комнатной температуре и сплавы исключительно жаростойкие, которые охотно берет на вооружение космическая техника. Немало, наконец, таких сплавов, что не разрушаются под действием даже самых сильных химических реагентов, и сплавов, по твердости лишь немного уступающих алмазу…
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Акимушкин Игорь Иванович (1929-1993)Ученый, популяризатор биологии. Автор более 60 научно-художественных и детских книг.Родился в Москве в семье инженера. Окончил биолого-почвенный факультет МГУ (1952). Печатается с 1956.Автор научно-популярных книг о жизни животных (главным образом малоизученных): «Следы невиданных зверей», «Тропою легенд», «Приматы моря», «Трагедия диких животных» и др.Его первые книги для детей появились в 1961 г.: «Следы невиданных зверей» и «Тропою легенд: Рассказы о единорогах и василисках».Для малышей Игорь Иванович написал целый ряд книжек, используя приемы, которые характерны для сказок и путешествий.
В первой книге «Мир животных» (автор задумал написать пять таких книг) рассказывается о семи отрядах класса млекопитающих: о клоачных, куда помещают ехидн и утконосов; об австралийских и южноамериканских сумчатых; насекомоядных, к которым относятся тенреки, щелезубы и всем известные кроты и землеройки; о шерстокрылах; хищных; непарнокопытных, сюда относятся лошадиные, тапиры и носороги, и, наконец, о парнокопытных: оленях, антилопах, быках, козлах и баранах.Второй выпуск посвящен остальным двенадцати отрядам класса млекопитающих: рукокрылым (летучие мыши и крыланы); приматам (полуобезьяны, обезьяны и человек), неполнозубым (ленивцы, муравьеды, броненосцы), панголинам (ящеры), зайцеобразным (пищухи, зайцы, кролики), грызунам, китообразным, ластоногим, трубкозубым, даманам, сиренам и хоботным.Третья книга рассказывает о птицах.
Если бы одна книга смогла вместить все о человеке, наверное, отпала бы нужда в книгах. Прочитав эту, вы узнаете новое о глубинных пружинах настроений и чувств; о веществах, взрывающих и лечащих психику; о скрытых резервах памяти; о гипнозе и тайных шифрах сновидений; о поисках и надеждах исследователей и врачей; кое-что о йогах и о том, что может сделать со своей психикой человек, если сам ею не слишком доволен.