Занимательная микроэлектроника - [7]

Шрифт
Интервал

источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.

Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.

Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС, т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.

Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обладать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечно малого) может обладать бесконечным выходным сопротивлением, довольно трудно, и в быту таких источников вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напряжения (не тока!), как R1 на рис. 1.3, при условии, что сопротивление нагрузки мало (R2 << R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разберемся позднее.

Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.4, а и б. Не перепутайте, логики в этих обозначениях немного, но так уж принято. А эквивалентные схемы (их еще называют схемами замещения) реальных источников приведены на рис. 1.4, в и г, где R>B обозначает внутреннее сопротивление источника. Как можно использовать эти эквивалентные схемы при анализе реальных цепей? Для этого нужно окончательно разобраться, как рассчитываются схемы с параллельным и последовательным включением резисторов.



Рис. 1.4.Источники тока и напряжения:

>а — обозначение идеального источника напряжения; б — обозначение идеального источника тока; в — эквивалентная схема реального источника напряжения; г — эквивалентная схема реального источника тока


Параллельное и последовательное соединение резисторов и расчет схем

Схемы постоянного тока любой степени сложности всегда можно представить как совокупность резисторов и идеальных источников напряжения и тока. Для их расчета достаточно знать два очень простых закона, названных по имени физика XIX столетия Густава Роберта Кирхгофа (1824–1887).

Первый закон Кирхгофа формулируется так: алгебраическая сумма токов в любом узле электрической цепи равна нулю. Или еще проще: сумма токов, направленных к данному узлу, равна сумме токов, направленных от него.

По сути он представляет одну из форм физических законов сохранения — ведь заряды не могут возникнуть из ничего, соответственно, сколько прибыло зарядов в некую точку, столько из нее обязано уйти.

Второй закон Кирхгофа гласит: алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю. Его легко проиллюстрировать на примере нашей схемы рис. 1.3 — там сумма падений напряжений на всех резисторах (включая внутреннее сопротивление батарейки, сопротивление амперметра, которым мы пренебрегали, и т. д.) равна напряжению батарейки. Иначе и быть не может— куда оно, напряжение батарейки, тогда денется?

Из законов Кирхгофа вытекают очень часто применяющиеся на практике правила последовательного и параллельного соединения резисторов: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые по определению, данному ранее, есть величины, обратные сопротивлению (рис. 1.5). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях.



Рис. 1.5.Последовательное и параллельное соединение резисторов


• При последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются (U = U>1 + U>2), что равносильно сложению сопротивлений.

• При параллельном соединении, наоборот, равны падения напряжений U, а складывать приходится токи (I = I>1 + I>2), что равносильно сложению проводимостей. Если вы не поняли сказанное, то посидите над рис. 1.5 с карандашом и бумагой и выведите выражения закона Ома для каждого из резисторов — и все станет на свои места.


Еще от автора Юрий Всеволодович Ревич
Информационные технологии в СССР. Создатели советской вычислительной техники

Показано, что представляла собой советская отрасль информационных технологий в реальности, без преувеличений и излишнего самоуничижения. Сборник составлен из очерков, посвященных создателям отечественной вычислительной техники советского периода. Вы узнаете о том, что в СССР существовала довольно развитая компьютерная отрасль, обеспечившая научные и военные нужды государства, созданная совершенно самостоятельно и нередко превосходившая зарубежные достижения. Авторы прослеживают все этапы ее развития, от создания первых компьютеров до распада самой страны, и подробно разбирают причины сдачи завоеванных позиций.Для широкого круга читателей.


Занимательная электроника

На практических примерах рассказано о том, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. От физических основ электроники, описания устройства и принципов работы различных радиоэлектронных компонентов, советов по оборудованию домашней лаборатории автор переходит к конкретным аналоговым и цифровым схемам, включая устройства на основе микроконтроллеров. Приведены элементарные сведения по метрологии и теоретическим основам электроники. Дано множество практических рекомендаций: от принципов правильной организации электропитания до получения информации о приборах и приобретении компонентов применительно к российским условиям.


1001 совет по обустройству компьютера

В книге собраны и обобщены советы по решению различных проблем, которые рано или поздно возникают при эксплуатации как экономичных нетбуков, так и современных настольных моделей. Все приведенные рецепты опробованы на практике и разбиты по темам: аппаратные средства персональных компьютеров, компьютерные сети и подключение к Интернету, установка, настройка и ремонт ОС Windows, работа в Интернете, защита от вирусов. Рассмотрены не только готовые решения внезапно возникающих проблем, но и ответы на многие вопросы, которые возникают еще до покупки компьютера.


Запрограммированные

Эта статья посвящена программам – но программам не компьютерным. Ученые давно обнаружили, что все живое на земле в процессе существования и жизнедеятельности управляется некими алгоритмами, причем в данном случае речь идет вовсе не о достижениях генетики и молекулярной биологии…


Михаил Анчаров. Писатель, бард, художник, драматург

Эта книга — первое подробное жизнеописание писателя, сценариста, художника и поэта Михаила Леонидовича Анчарова (1923–1990). Анчаров — один из основателей жанра авторской песни, которой начал заниматься раньше других: первые песни написаны еще в конце тридцатых годов прошлого века. В шестидесятые годы им были опубликованы прозаические произведения, которые сделали М. Л. Анчарова признанным писателем. В семидесятые годы он создал сценарий первого советского телесериала «День за днем». Вернувшись к прозе во второй половине семидесятых, Анчаров написал несколько повестей и романов, которые до сих пор хорошо известны читателям («Дорога через хаос», «Самшитовый лес», «Записки странствующего энтузиаста»). Биография представлена на фоне социально-исторических событий, повлиявших на его судьбу и творчество.


Рекомендуем почитать
Искусство схемотехники. Том 1 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.


Искусство схемотехники. Том 3 [Изд.4-е]

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.


Электроника?.. Нет ничего проще!

Книга в занимательной форме знакомит читателя со многими областями одной из наиболее быстро развивающихся в настоящее время наук — электроники. Рассказывается о возможностях использования электроники в промышленности.Книга рассчитана на широкий круг читателей.


А. С. Попов и советская радиотехника

Более полувека назад произошло одно из самых славных событий в истории русской науки: 7 мая 1895 г. великий русский учёный А. С. Попов продемонстрировал изобретённый и построенный им первый в мире радиоприёмник. С тех пор радиотехника прошла огромный путь развития — от посылки и приёма телеграфных сигналов до передачи изображений по радио. Радио стало мощнейшим средством связи и обороны нашей Родины, орудием политического и культурного воспитания, могучим средством организации масс.


Рецептура радиолюбителя (Консультация центрального радиоклуба)

В данной листовке приводится ряд рецептов склеивания, встречающихся в радиолюбительской практике, способы художественной отделки деревянных ящиков для радиоаппаратуры и некоторые практические советы радиолюбителям.


Радиоцензура

В отличие от темы иновещания тематика радиотехнической борьбы между "социалистическим" лагерем и капиталистическими странами остаётся практически неизвестной массовому читателю.В данной работе автор - Римантас Плейкис (бывший министр связи Литвы в 1996-1998 гг.) подробно рассматривает радиоцензуру (синонимы: радиозащита, радиоподавление, постановка помех, глушение, радиопротиводействие, забивка антисоветских радиопередач, радиоэлектронная борьба).Без преувеличения эта статья, написанная в 2002-2003 годах, закрывает еще одно "белое пятно" в противостоянии двух военно-политических блоков и раскрывает технологию радиотехнической цензуры.К сожалению, для русскоязычных читателей доступен только электронный вариант данного исследования.