Занимательная физика. Книга 2 - [74]

Шрифт
Интервал

Верно ли это? Действительно ли в полутьме и красный флаг и зеленая листва представляются одинаково серыми? Легко убедиться в правильности этого утверждения. Кто в сумерки приглядывался к окраске предметов, тот замечал, конечно, что цветовые различия стираются и все вещи кажутся более или менее темно-серыми: и красное одеяло, и синие обои, и фиолетовые цветы, и зеленые листья.

«Сквозь опущенные шторы, — читаем мы у Чехова („Письмо“), — сюда не проникали солнечные лучи, было сумеречно, так что все розы в большом букете казались одного цвета».

Точные физические опыты вполне подтверждают это наблюдение. Если окрашенную поверхность освещать слабым белым светом (или белую поверхность — слабым окрашенным светом), постепенно усиливая освещение, то глаз сначала видит просто серый цвет, без какого-либо цветового оттенка. И лишь когда освещение усиливается до определенной степени, глаз начинает замечать, что поверхность окрашена. Эта степень освещения называется «низшим порогом цветового ощущения».

Итак, буквальный и вполне правильный смысл поговорки (существующей на многих языках) тот, что ниже порога цветового ощущения все предметы кажутся серыми.

Обнаружено, что существует и высший порог цветового ощущения. При чрезвычайно ярком освещении глаз снова перестает различать цветовые оттенки: все окрашенные поверхности одинаково кажутся белыми.

Глава десятая

Звук. Волнообразное движение.


Звук и радиоволны

Звук распространяется примерно в миллион раз медленнее света; а так как скорость радиоволн совпадает со скоростью распространения световых колебаний, то звук в миллион раз медленнее радиосигнала. Отсюда вытекает любопытное следствие, сущность которого выясняется задачей: кто раньше услышит первый аккорд пианиста, посетитель концертного зала, сидящий в 10 метрах от рояля, или радиослушатель у аппарата, принимающий игру пианиста у себя на квартире, в 100 километрах от зала?

Как ни странно, радиослушатель услышит аккорд раньше, чем посетитель концертного зала, хотя первый сидит в 10 000 раз дальше от музыкального инструмента. В самом деле: радиоволны пробегают 100-километровое расстояние в

100 / 300 000 = 1 / 3 000 секунды

Звук же проходит 10-метровое расстояние в

10 / 340 = 1 / 34 секунды.

Отсюда видно, что передача звука по радио потребует почти в сто раз меньше времени, чем передача звука через воздух.

Звук и пуля

Когда пассажиры жюль-вернова снаряда полетели на Луну, они были озадачены тем, что не слышали звука выстрела колоссальной пушки, извергнувшей их из своего жерла. Иначе и быть не могло. Как бы оглушителен ни был грохот, скорость распространения его (как и вообще всякого звука в воздухе) равнялась всего лишь 340 м/сек, снаряд же двигался со скоростью 11 000 м/сек. Понятно, что звук выстрела не мог достичь ушей пассажиров: снаряд обогнал звук[74].

А как обстоит дело с настоящими снарядами и пулями: движутся ли они быстрее звука или, напротив, звук перегоняет их и предупреждает жертву о приближении смертоносного снаряда?

Современные винтовки сообщают пулям при выстреле скорость, почти втрое большую, чем скорость звука в воздухе, — именно около 900 м в секунду (скорость звука при 0° равна 332 м/сек). Правда, звук распространяется равномерно, пуля же летит, замедляя быстроту своего полета. Однако в течение большей части пути пуля все же движется быстрее звука. Отсюда прямо следует, что если во время перестрелки вы слышите звук выстрела или свист пули, то можете не беспокоиться: эта пуля вас уже миновала. Пуля перегоняет звук выстрела, и если пуля поразит свою жертву, то последняя будет убита раньше, чем звук выстрела, которым послана эта пуля, достигнет ее уха.

Мнимый взрыв

Состязание в скорости между летящим телом и производимым им звуком заставляет нас иногда невольно делать ошибочные заключения, подчас совершенно не отвечающие истинной картине явления.

Любопытный пример представляет болид (или пушечный снаряд), пролетающий высоко над нашей головой. Болиды, проникающие в атмосферу нашей планеты из мирового пространства, обладают огромной скоростью, которая, даже будучи уменьшена сопротивлением атмосферы, все же в десятки раз больше скорости звука.

Прорезая воздух, болиды нередко производят шум, напоминающий гром. Вообразите, что мы находимся в точке C (рис. 152), а вверху над нами по линии AB летит болид. Звук, производимый болидом в точке A, дойдет до нас (в C) только тогда, когда сам болид успеет уже переместиться в точку B; так как болид летит гораздо быстрее звука, то он может успеть дойти до некоторой точки D и отсюда послать нам звук раньше, чем дойдет до нас звук из точки A. Поэтому мы услышим сначала звук из точки D и лишь потом звук из точки A. И так как из точки B звук придет к нам тоже позже, чем из точки D, то где-то над нашей головой должна быть такая точка K, находясь в которой болид подает свой звуковой сигнал раньше всего. Любители математики могут вычислить положение этой точки, если зададутся определенным отношением скорости болида и звука,

Рисунок 152. Мнимый взрыв болида.

Вот результат: то, что мы услышим, будет вовсе не похоже на то, что мы увидим. Для глаза болид появится прежде всего в точке A и отсюда пролетит по линии AB. Но для уха болид появится прежде всего где-то над нашей головой в точке K, затем мы услышим в одно время два звука, затихающие по противоположным направлениям — от: K к A и от K к B. Другими словами, мы услышим, как болид словно распался на две части, которые унеслись в противоположные стороны. Между тем в действительности никакого взрыва не происходило. Вот до чего обманчивы могут быть слуховые впечатления! Возможно, что многие засвидетельствованные «очевидцами» взрывы болидов — именно такого рода обманы слуха.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.