Занимательная физика. Книга 2 - [33]

Шрифт
Интервал

Измерено, что сильная ломовая лошадь тянет воз с усилием всего в 80 кг[41]. Следовательно, для разрыва магдебургских полушарий понадобилось бы при равномерной тяге 1000/80 = по 13 лошадей с каждой стороны[42].

Читатель будет, вероятно, изумлен, узнав, что некоторые сочленения нашего скелета не распадаются по той же причине, что и магдебургские полушария. Наше тазобедренное сочленение представляет собой именно такие магдебургские полушария. Можно обнажить это сочленение от мускульных и хрящевых связей, и все-таки бедро не выпадает: его прижимает атмосферное давление, так как в межсуставном пространстве воздуха нет.

Новые героновы фонтаны

Обычная форма фонтана, приписываемого древнему механику Герону, вероятно, известна моим читателям, Напомню здесь его устройство, прежде чем перейти к описанию новейших видоизменений этого любопытного прибора. Геронов фонтан (рис. 60) состоит из трех сосудов: верхнего открытого a и двух шарообразных b и c, герметически замкнутых. Сосуды соединены тремя трубками, расположение которых показано на рисунке. Когда в a есть немного воды, шар b наполнен водой, а шар c — воздухом, фонтан начинает действовать: вода переливается по трубке из a в c, вытесняя оттуда воздух в шар b; под давлением поступающего воздуха вода из b устремляется по трубке вверх и бьет фонтаном над сосудом a. Когда же шар b опорожнится, фонтан перестает бить.

Рисунок 59. Кости наших тазобедренных сочленений не распадаются благодаря атмосферному давлению, подобно тому как сдерживаются магдебургские полушария.

Рисунок 60. Старинный геронов фонтан.

Рисунок 61. Современное видоизменение геронова фонтана. Вверху — вариант устройства тарелки.

Такова старинная форма геронова фонтана. Уже в наше время один школьный учитель в Италии, побуждаемый к изобретательности скудной обстановкой своего физического кабинета, упростил устройство геронова фонтана и придумал такие видоизменения его, которые каждый может устроить при помощи простейших средств (рис. 61). Вместо шаров он употребил аптечные склянки; вместо стеклянных или металлических трубок взял резиновые. Верхний сосуд не надо продырявливать: можно просто ввести в него концы трубок, как показано на рис. 61 вверху.

В таком видоизменении прибор гораздо удобнее к употреблению: когда вся вода из банки b перельется через сосуд a в банку c, можно просто переставить банки b и c, и фонтан вновь действует; не надо забывать, разумеется, пересадить также наконечник на другую трубку.

Другое удобство видоизмененного фонтана состоит в том, что он дает возможность произвольно изменять расположение сосудов и изучать, как влияет расстояние уровней сосудов на высоту струи.

Если желаете во много раз увеличить высоту струи, вы можете достигнуть этого, заменив в нижних склянках описанного прибора воду ртутью, а воздух — водой (рис. 62). Действие прибора понятно: ртуть, переливаясь из банки c в банку b, вытесняет из нее воду, заставляя ее бить фонтаном. Зная, что ртуть в 13,5 раза тяжелее воды, мы можем вычислить, на какую высоту должна подниматься при этом струя фонтана. Обозначим разницу уровней соответственно через h1, h2, h3. Теперь разберемся, под действием каких сил ртуть из сосуда c (рис. 62) перетекает в b. Ртуть в соединительной трубке подвержена давлению с двух сторон. Справа на нее действует давление разности h2 ртутных столбов (которое равносильно давлению в 13,5 раза более высокого водяного столба, 13,5 h2) плюс давление водяного столба h1. Слева напирает водяной столб h3. В итоге ртуть увлекается силой

13,5 h2 + h1 – h3.

Но h3 – h1 = h2; заменяем поэтому h1 – h3 на минус h2 и получаем:

13,5 h2 – h2 т. е. 12,5 h2.

Итак, ртуть поступает в сосуд b под давлением веса водяного столба высотой 12,5 h2. Теоретически фонтан должен бить поэтому на высоту, равную разности ртутных уровней в склянках, умноженной на 12,5. Трение несколько понижает эту теоретическую высоту.

Тем не менее описанный прибор дает удобную возможность получить бьющую высоко вверх струю. Чтобы заставить, например, фонтан бить на высоту 10 м, достаточно поднять одну банку над другой примерно на один метр. Любопытно, что, как видно из нашего расчета, возвышение тарелки а над склянками с ртутью нисколько не влияет на высоту струи.

Рисунок 62. Фонтан, действующий давлением ртути. Струя бьет раз в десять выше разности уровней ртути.

Обманчивые сосуды

В старину — в XVII и XVIII веках — вельможи забавлялись следующей поучительной игрушкой: изготовляли кружку (или кувшин), в верхней части которой имелись крупные узорчатые вырезы (рис. 63). Такую кружку, налитую вином, предлагали незнатному гостю, над которым можно было безнаказанно посмеяться. Как пить из нее? Наклонить — нельзя: вино польется из множества сквозных отверстий, а до рта не достигнет ни капли. Случится, как в сказке:

Рисунок 63. Обманчивый кувшин конца XVIII века и секрет его устройства.

Мед, пиво пил,
Да усы лишь обмочил.

Но кто знал секрет устройства подобных кружек, — секрет, который показан на рис. 63 справа, — тот затыкал пальцем отверстие B, брал в рот носик и втягивал в себя жидкость, не наклоняя сосуда: вино поднималось через отверстие E по каналу внутри ручки, далее по его продолжению C внутри верхнего края кружки и достигало носика.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.