Занимательная астрономия - [52]

Шрифт
Интервал

Для брошенного вверх артиллерийского снаряда это должно проявиться в том, что снаряд поднимется выше, чем в случае, если бы тяжесть с высотой не убывала. Для снаряда, выпущенного отвесно вверх со скоростью 8000 м в секунду, мы приняли, что он поднимется до высоты 6400 км. Между тем, если вычислить высоту поднятия этого снаряда по общеизвестной формуле, не учитывающей ослабления тяжести с высотой, получится высота вдвое меньшая. Сделаем это вычисление. В учебниках физики и механики приводится формула для вычисления высоты h поднятия тела, брошенного отвесно вверх со скоростью v при неизменном ускорении силы тяжести g:



Для случая v = 8000 м/с, g = 9,8 м/с>2 получаем



Это почти вдвое ниже той высоты поднятия, которая указана в предыдущей статье. Разногласие обусловлено, как уже говорилось, тем, что, пользуясь формулами учебника, мы не приняли во внимание ослабления силы тяжести с высотой. Ясно, что если снаряд притягивается Землей слабее, он должен при данной скорости подняться выше.

Не следует спешить с заключением, что приводимые в учебниках формулы для вычисления высоты подъема тела, брошенного вверх, неверны. Они верны в тех границах, для которых предназначаются, и становятся неверными лишь тогда, когда вычислитель выходит с ними за указанные границы. Предназначаются же эти формулы для весьма небольших высот, где ослабление силы тяжести еще настолько незначительно, что им можно пренебречь. Так, для снаряда, брошенного вверх с начальной скоростью 300 м/с, ослабление силы тяжести сказывается весьма мало.

Но вот интересный вопрос: ощутительно ли уменьшение силы тяжести для высот, с которыми имеют дело современная авиация и воздухоплавание? Заметно ли уже на этих высотах уменьшение веса тел? В 1936 г. летчик Владимир Коккинаки поднимал в своей машине различные грузы на большую высоту: ½ т на высоту 11 458 м, 1 т – на 12 100 м и 2 т на 11 295 м. Спрашивается: сохраняли ли эти грузы на указанных рекордных высотах свой первоначальный вес или теряли там заметную его часть? С первого взгляда может казаться, что подъем над земной поверхностью на десяток с лишним километров не может заметно уменьшить вес груза на такой большой планете, как Земля. Находясь у земной поверхности, груз отстоял от центра нашей планеты на 6400 км; поднятие на 12 км увеличивает это расстояние до 6412 км: прибавка как будто чересчур ничтожная, чтобы могла сказаться убыль в весе. Расчет, однако, говорит другое: потеря веса получается довольно ощутимая.

Выполним вычисление для одного случая: например, для подъема Коккинаки с грузом 2000 кг на 11 295 м. На этой высоте самолет находится дальше от центра земного шара, нежели при старте, в 6411,3/6400 раз.

Сила притяжения ослабевает здесь в



Следовательно, груз на указанной высоте должен весить



Если выполнить это вычисление (для чего удобно воспользоваться приемами приближенного расчета,[47] то выяснится, что груз в 2000 кг на рекордной высоте весил только 1993 кг; он стал на 7 кг легче – убыль веса довольно ощутительная. Килограммовая гиря на такой высоте вытягивала бы на пружинном безмене только 996,5 г; 3,5 г веса теряется.

Еще большую потерю веса должны были обнаружить наши стратонавты, достигшие высоты 22 км: 7 г на каждый килограмм.

Для рекордного подъема летчика Юмашева, поднявшего в 1936 г. груз в 5000 кг на высоту 8919 м, можно вычислением установить общую потерю веса грузом в 14 кг.

В 1959 г. летчик В.К. Коккинаки поднял на самолете ИЛ-18 на высоту 12 118 м груз в 20 т, в 1961 г. экипаж в составе И.М. Сухомлина, П.В. Солдатова, Н.Ф. Носова, В.И. Богданова на ТУ-114 поднял на 12 535 м груз в 30 035 кг. Пользуясь изложенным выше, читатель без труда сможет выполнить вычисление того, как велика была в этих случаях потеря веса.

С циркулем по планетным путям

Из трех законов планетных движений, с огромными усилиями вырванных у природы гением Кеплера, наименее понятен для многих, пожалуй, первый.

Закон этот утверждает, что планеты движутся по эллипсам. Почему же именно по эллипсам? Казалось бы, раз от Солнца во все стороны исходит одинаковая сила, ослабевающая с удалением в одинаковой мере, то планеты должны обходить Солнце по кругам, а никак не по вытянутым замкнутым путям, в которых Солнце к тому же не занимает центрального положения. Недоумения подобного рода исчерпывающе разъясняются при математическом рассмотрении вопроса. Но необходимыми познаниями из высшей математики владеют лишь немногие друзья неба. Постараемся же сделать ощутительной правильность законов Кеплера для тех наших читателей, которые могут распоряжаться только арсеналом элементарной математики.

Вооружившись циркулем, масштабной линейкой и большим листом бумаги, будем сами строить планетные пути и таким образом убедимся графически, что получаются они такими, какими должны быть согласно законам Кеплера.



Рис. 83. Сила притяжения планеты Солнцем увеличивается с уменьшением расстояния


Движение планет управляется силой тяготения. Займемся ею. Кружок в правой части рис. 83 изображает некое воображаемое солнце; влево от него – воображаемая планета. Расстояние между ними пусть будет 1 000 000 км, на чертеже оно представлено 5 см – в масштабе 200 000 км в 1 см.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Рекомендуем почитать
99 секретов астрономии

В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.