Занимательная астрономия - [28]
Затмения лунные не представляют для современных астрономов того исключительного интереса, какой связан с солнечными. Наши предки видели в затмениях Луны удобные случаи убедиться в шарообразной форме Земли. Поучительно напомнить о той роли, какую сыграло это доказательство в истории кругосветного плавания Магеллана. Когда после утомительного долгого путешествия по пустынным водам Тихого океана матросы пришли в отчаяние, решив, что они безвозвратно удалились от твердой земли в водный простор, которому не будет конца, один Магеллан не терял мужества. «Хотя церковь постоянно твердила на основании священного писания, что Земля – обширная равнина, окруженная водами, – рассказывает спутник великого мореплавателя, – Магеллан черпал твердость в следующем соображении: при затмениях Луны тень, бросаемая Землею, – круглая, а какова тень, таков должен быть и предмет, ее бросающий…». В старинных книгах по астрономии мы находим даже рисунки, поясняющие зависимость формы лунной тени от формы Земли (рис. 57).
Рис. 57. Старинный рисунок, поясняющий мысль, что по виду земной тени на диске Луны можно судить о форме Земли
Теперь мы в подобных доказательствах уже не нуждаемся. Зато лунные затмения дают возможность судить о строении верхних слоев земной атмосферы по яркости и окраске Луны. Как известно, Луна не бесследно исчезает в земной тени, а продолжает быть видимой в солнечных лучах, загибающихся внутрь теневого конуса. Сила освещения Луны в эти моменты и его цветовые оттенки представляют для астрономии большой интерес и находятся, как установлено, в неожиданной связи с числом солнечных пятен. Кроме того, в последнее время пользуются явлениями лунных затмений, чтобы измерять быстроту остывания лунной почвы, когда она лишается солнечного тепла (мы еще вернемся к этому дальше).
Задолго до нашей эры вавилонские наблюдатели неба подметили, что ряд затмений – и солнечных и лунных – повторяется каждые 18 лет и 10 дней. Период этот называли «саросом». Пользуясь им, древние предсказывали наступление затмений, но они не знали, чем обусловливается столь правильная периодичность и почему «сарос» имеет именно такую, а не иную продолжительность. Обоснование периодичности затмений было найдено гораздо позднее, в результате тщательного изучения движения Луны.
Чему равно время обращения Луны по ее орбите? Ответ на этот вопрос может быть различен в зависимости от того, в какой момент считать законченным оборот Луны вокруг Земли. Астрономы различают пять родов месяцев, из которых нас интересуют сейчас только два:
1. Так называемый «синодический» месяц, т. е. промежуток времени, в течение которого Луна совершает по своей орбите полный оборот, если следить за этим движением с Солнца. Это – период времени, протекающий между двумя одинаковыми фазами Луны, например, от новолуния до новолуния. Он равен 29,5306 суток.
2. Так называемый драконический месяц, т. е. промежуток, по истечении которого Луна возвращается к тому же «узлу» своей орбиты (узел – пересечение лунной орбиты с плоскостью земной орбиты). Продолжительность такого месяца – 27,2122 суток.
Затмения, как легко сообразить, происходят только в моменты, когда Луна в фазе полнолуния или новолуния бывает в одном из своих узлов: тогда ее центр находится на одной прямой с центрами Земли и Солнца. Очевидно, что если сегодня случилось затмение, то оно должно наступить вновь через такой промежуток времени, который заключаетцелое число синодических и драконических месяцев: тогда повторятся условия, при которых бывают затмения.
Как находить подобные промежутки времени? Для этого надо решить уравнение
29,5306х = 27,2122у,
где х и у – целые числа. Представив его в виде пропорции
видим, что наименьшие точные решения этого уравнения таковы:
х = 272 122………. у = 295 306.
Получается огромный, в десятки тысячелетий, период времени, практически бесполезный. Древние астрономы довольствовались решением приближенным. Наиболее удобное средство для отыскания приближений в подобных случаях дают непрерывные дроби. Развернем дробь
в непрерывную. Выполняется это так. Исключив целое число, имеем
В последней дроби делим числитель и знаменатель на числитель:
Числитель и знаменатель дроби
делим на числитель и так поступаем в дальнейшем. Получаем в конечном итоге
Из этой дроби, беря первые ее звенья и отбрасывая остальные, получаем такие последовательные приближения:
Пятая дробь в этом ряду дает уже достаточную точность. Если остановиться на ней, т. е. принять х = 223, а у = 242, то период повторяемости затмений получится равным 223 синодическим месяцам, или 242 драконическим.
Это составляет 6585>1/>3 суток, т. е. 18 лет 11,3 суток (или 10,3[16] суток).
Таково происхождение сароса. Зная, откуда он произошел, мы можем отдать себе отчет и в том, насколько точно можно с его помощью предсказывать затмения. Мы видим, что, считая сарос равным 18 годам 10 суткам, отбрасывают 0,3 суток. Это должно сказаться в том, что затмения, предусмотренные по такому укороченному периоду, будут наступать в другие часы дня, чем в предшествующий раз (примерно на 8 часов позже), и только при пользовании периодом, равным тройному точному саросу, затмения будут повторяться почти в те же моменты дня. Кроме того, сарос не учитывает изменений расстояния Луны от Земли и Земли от Солнца, изменений, которые имеют свою периодичность; от этих расстояний зависит, будет ли солнечное затмение полным или нет. Поэтому сарос дает возможность предсказать лишь то, что в определенный день должно случиться затмение, но будет ли оно полное, частное или кольцеобразное, а также можно ли будет его наблюдать в тех же местах, как и в предыдущий раз, утверждать нельзя.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.