Закрученные пассажи: Проникая в тайны скрытых размерностей пространства - [42]

Шрифт
Интервал

Во-первых, это гравитационное красное смещение света. В результате красного смещения мы принимаем световые волны меньшей частоты, чем та, с которой они были испущенны. (Вы, вероятно, встречались с аналогичным эффектом для звуковых волн, когда мотоцикл с ревом мчится мимо вас, и высота звука мотора нарастает, а затем падает.)

Есть несколько способов объяснить происхождение гравитационного красного смещения, но, вероятно, простейший — это объяснение по аналогии. Представьте, что вы подбросили вверх мяч. Поднимающийся мяч постепенно замедляется, двигаясь противоположно направлению силе тяжести. Но энергия мяча не потеряна, даже если он замедляется. Эта энергия превращается в потенциальную энергию, которая затем, когда мяч падает вниз, превращается в кинетическую энергию, или энергию движения.

Такое же объяснение применимо к частице света фотону. Точно так же, как мяч теряет импульс, если его подбросить вверх в воздухе, фотон теряет импульс, когда он пытается избавиться от влияния гравитационного поля. Как и в случае мяча, это означает, что фотон теряет кинетическую энергию, но приобретает потенциальную энергию, пробивая себе путь из гравитационного поля. Но фотон не может замедлиться, как это происходит с мячом, так как фотон всегда летит с постоянной скоростью света. Забегая вперед, мы увидим в следующей главе, что одно из следствий квантовой механики гласит: фотон уменьшает свою энергию, когда он уменьшает свою частоту. Именно это и происходит с фотоном, пролетающим сквозь область с переменным гравитационным потенциалом. Чтобы уменьшить свою энергию, фотон уменьшает свою частоту, и эта уменьшившаяся частота и представляет собой гравитационное красное смещение.

Наоборот, фотон, движущийся к источнику гравитационного поля, будет увеличивать свою частоту. В 1965 году физик канадского происхождения Роберт Паунд и один из его студентов Глен Ребка измерили этот эффект, изучив гамма-излучение, испущенное образцом радиоактивного железа, помещенным на верхушке «башни» в гарвардской лаборатории им. Джефферсона, — том здании, где я сейчас работаю. (Хотя приподнятый фронтон лаборатории им. Джефферсона и этажи под ним являются частью всего здания, их называют «башней».) Гравитационные поля на вершине и у основания башни несколько различаются, так как вершина находится чуть дальше от центра Земли. Высокая башня лучше всего подходит для такого эксперимента, так как при этом увеличивается разность высот между местом, откуда испускается гамма-излучение (вершина башни), и местом, где оно регистрируется (основание башни). Но даже несмотря на то, что вся башня состоит из трех этажей, фронтона и нескольких окон над ним, и вся ее высота равна около 22 м, Паунду и Ребке удалось с немыслимой точностью, равной пяти миллионным от миллиардной доли, измерить разность частот между испущенными и поглощенными фотонами. Таким образом, они установили, что предсказания общей теории относительности для гравитационного красного смещения были верны с точностью, равной по меньшей мере 1 %.

Второе экспериментально наблюдаемое следствие принципа эквивалентности — это отклонение луча света. Гравитация может притягивать не только массу, но и энергию. В конце концов, знаменитое соотношение E = mc>2 означает, что энергия и масса тесно связаны. Если масса испытывает тяготение, это же должно быть верно и для энергии. Тяготение Солнца влияет не только на массу, но и на траекторию луча света. Теория Эйнштейна точно предсказывает величину отклонения луча света под влиянием Солнца. Эти предсказания были впервые подтверждены во время солнечного затмения 1919 года.

Английский ученый Артур Эддингтон организовал экспедиции на остров Принсипе у берегов Западной Африки и в город Собрал в Бразилии, где можно было наилучшим образом наблюдать затмение. Цель ученых состояла в том, чтобы сфотографировать звезды в окрестности закрытого Луной Солнца и проверить, не сдвинулись ли изображения соседних к Солнцу звезд по отношению к своим обычным положениям. Если окажется, что звезды сдвинулись, это будет означать, что свет от них двигался по искривленной траектории. (Ученые должны производить измерения во время солнечного затмения, для того чтобы солнечный свет не подавлял намного более слабый свет звезд.) Было установлено, что звезды оказались на предсказанных «неправильных» местах. Измерение соответствующего угла отклонения дало сильное подтверждение в пользу общей теории относительности Эйнштейна.

Невероятно, но отклонение луча света сейчас настолько хорошо установлено и объяснено, что оно стало одним из инструментов, используемых для исследования распределения масс во Вселенной и поиска темной материи в форме маленьких выгоревших звезд, уже не испускающих свет. Такие объекты очень трудно увидеть, так же как черных кошек в безлунную ночь. Единственный способ наблюдать эти объекты — это воспользоваться создаваемыми ими гравитационными эффектами.

Одним из способов, которым астрономы могут изучать темные тела, является гравитационное линзирование. Темные тела, как и все другие, взаимодействуют за счет тяготения. Хотя выгоревшие звезды сами не испускают свет, за ними (с нашей точки зрения) могут находиться яркие тела, свет которых мы видим. Если на пути света от этих звезд нет никакой темной звезды, свет будет распространяться по прямым линиям. Но если свет яркой звезды проходит рядом с темной звездой, он отклонится. Свет, идущий слева от темной звезды, отклонится в противоположном направлении по сравнению со светом, идущим справа, а свет, идущий сверху, отклонится в противоположном направлении, чем свет, идущий снизу. Это создает многократные изображения ярких тел за темной звездой, и явление называется


Еще от автора Лиза Рэндалл
Достучаться до небес: Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Политика России в Центрально-Восточной Европе (первая треть ХХ века): геополитический аспект

100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.


Под сенью учителя

Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


`Тук-тук-тук` - и никого!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Алфавитно-предметный указатель к систематическому каталогу

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.