Закон «джунглей» - [20]

Шрифт
Интервал

Он вернулся к той работе, которую прервала война. Ферментная адаптация крайне привлекала его своей логичностью: как бактерия, столь крошечная, едва различимая в микроскоп, не имеющая никакой нервной или эндокринной системы, – просто пузырек с химическими веществами, заключенными в мембрану, – «узнавала», какой именно фермент производить для переработки имевшегося сахара?

Ферменты – это белки, а клетки синтезируют сотни различных белков. Моно понял, что этот вопрос, в сущности, является вопросом регуляции: как клетка «решает» производить в конкретных условиях какой-то определенный фермент, но не другие?

Моно верил, что его исследования регуляции бактериальных ферментов позволят разобраться отнюдь не только в гастрономических пристрастиях микробов-сладкоежек. Он понимал, что отличия между разными типами клеток в организмах более сложноорганизованных существ также определяются регуляцией. Например, эритроциты синтезируют белковую часть гемоглобина, транспортирующего кислород, а лейкоциты синтезируют белки антител, борющихся с инфекциями. Моно полагал, что, если понять, почему и как бактерия синтезирует определенный фермент, это поможет пролить свет на образование различных типов клеток.

Чтобы хоть немного проникнуть в эту тайну, он решил сосредоточиться на одном сахаре – это был молочный сахар лактоза – и исследовать одного «ключевого игрока» – бактериальный фермент, разлагающий лактозу на галактозу и глюкозу. Этот фермент называется β-галактосидазой. Бактерии предпочитают извлекать энергию из простых сахаров. Чтобы использовать лактозу – соединение, состоящее из двух сахаров, глюкозы и галактозы, – эту молекулу требуется расщеплять надвое.

В конце 1940-х и начале 1950-х молекулярная биология только зарождалась, было сложно понять, как ставить большинство экспериментов. Моно и его группа превосходно разрабатывали технологии, позволявшие интерпретировать различные возможности. Основное наблюдение заключалось в следующем: фермент начинал образовываться благодаря присутствию сахара. Возможное объяснение было таким: сахар каким-то образом активировал фермент, непосредственно связываясь с уже имеющейся неактивной формой фермента в бактериальной клетке и преобразуя этот фермент в активную форму. Разработав ряд умных и технически нетривиальных экспериментов, Моно с коллегами отбраковали эту идею.

Опыты Моно показали, что лактоза жестко регулировала производство фермента. Когда E. coli росла в отсутствии лактозы, во всей клетке можно было найти всего несколько молекул фермента β-галактосидазы. Стоило добавить лактозу, и всего за несколько минут в одной клетке появлялось уже несколько тысяч таких молекул. При удалении сахара синтез фермента прекращался (рис. 3.5). Такое включение и выключение производства фермента непонятным образом зависели от присутствия или отсутствия сахара. Принято говорить, что сахар является индуктором синтеза фермента.

Со стороны бактерии это было весьма логично: она синтезировала фермент только при наличии лактозы (источника пищи) и не тратила энергию на производство фермента впустую, когда лактозы вокруг не было. Но как работала эта логика?

Моно несколько лет не удавалось уловить законы регуляции синтеза ферментов. На то было две причины. Во-первых, у него существовало предубеждение насчет того, как может работать логика регуляции. Простое наблюдение показывало: бактерия синтезирует фермент в присутствии сахара, индуктора. Моно и его коллеги продолжали воспринимать индуктор как нечто положительно контролирующее синтез ферментов (здесь и далее схематически изображается стрелкой →).



Чтобы совершить прорыв, им оставалось открыть еще одного «ключевого игрока» и прийти к обратной логике.

Я объясню, как они в итоге во всем разобрались, но верная логика настолько важна для понимания регуляции и всей книги, что я не хотел бы, чтобы вы увязли в этих экспериментальных деталях и упустили общую картину. Поэтому сразу расскажу вам, о чем не догадывался Моно и как лактоза регулирует синтез ферментов. Затем вернусь к этому месту и опишу, как Моно с коллегами во всем разобрались.

Тем «игроком», которого требовалось открыть Моно, был другой белок, действующий в качестве посредника между ферментом и лактозой. Этот белок называется репрессором, так как его задача заключается именно в угнетении синтеза фермента β-галактосидазы. Такая обратная логика осознается, как только понимаешь, что лактоза не оказывает прямого положительного контроля на синтез фермента. На самом деле лактоза ингибирует репрессор, который в таком случае прекращает угнетать синтез фермента.


Рис. 3.5

Индуцирование синтеза фермента. Когда индуктор, например лактоза, добавляется в популяцию E. coli, синтезируется фермент β-галактосидаза. При удалении индуктора синтез фермента останавливается

Из работы Моно и Жакоба (1961), перерисовано Лиэнн Олдз


Логика такова: минус на минус дает плюс.

Закон двойного отрицания при ферментной регуляции имеет огромный биологический смысл: в отсутствии лактозы фермент, расщепляющий сахар, не нужен, и репрессор не дает синтезировать фермент (ниже и далее в книге отрицательная регуляция обозначается символом ┴); если лактоза присутствует, то она ингибирует репрессор; таким образом, ген фермента включается, фермент расщепляет сахар и обеспечивает клетку энергией.


Еще от автора Шон Б Кэрролл
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.


Приспособиться и выжить!

В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.