Юный техник, 2015 № 07 - [22]
Ее удобно преобразовать для быстрых расчетов. Поскольку c/f>o = λ, F = 2V/λ. Итак, доплеровский сдвиг частоты равен числу полу
волн, проходимых объектом за секунду в радиальном направлении (к передатчику или от него). Когда объект находится на траверсе приемопередатчика и расстояние до него не изменяется (радиальная скорость нулевая), доплеровского сдвига частоты нет, то есть F = 0.
Сейчас доплеровские РЛС широко использует дорожная полиция для контроля скорости автомобилей. Луч ручного радара (спид-гана) направляют вдоль шоссе, следя за приближающимися или удаляющимися автомобилями. Несложно сосчитать, что при длине волны
3 см и скорости автомобиля 30 м/с (108 км/ч) доплеровский сдвиг составит 2 кГц. Схема радара крайне проста: он содержит генератор, смеситель, УНЧ, частотомер и, конечно, направленную антенну. На смеситель поступает часть сигнала передатчика и его отражение от автомобиля. На выходе смесителя выделяется низкочастотный сигнал биений, частота которого зависит от скорости автомобиля.
Схема изменения доплеровского сдвига частоты.
Именно этот эффект используют для исследования ионосферы. Подъем или опускание отражающего слоя должны приводить, соответственно, к понижению или повышению частоты принятого сигнала, по которым легко вычислить скорость движения слоя. Однако, поскольку двигаться слои могут очень медленно, доплеровский сдвиг может измеряться долями, в лучшем случае единицами герц.
Измерить такой сдвиг несложно ионозонду, когда передатчик и приемник рядом (как в спид-гане), но оказывается проблемой при приеме удаленных станций. Все дело в стабильности и точности установки частоты как радиостанции, так и гетеродинов приемника.
Однако ионосфера — это турбулентная среда, в которой возникают не только медленные изменения, но и вихри, и прочие крупно- и мелкомасштабные неоднородности.
Флуктуации электронной концентрации неизбежно приводят к изменению коэффициента отражения, и даже места, от которого отражается сигнал. Из-за этого быстро изменяется как амплитуда, так и фаза отраженного сигнала. В результате вместо чистого синусоидального сигнала, посылаемого к ионосфере, мы получаем сложный псевдошумовой сигнал с размытым спектром.
Решение проблемы стабильности частоты предложено автором и состоит в использовании несущих частот радиостанций. Они расположены в соответствии со строгой сеткой вещания х5 кГц, и их частота по ГОСТу должна устанавливаться с точностью не хуже 10 Гц. Стабильность частоты радиовещательных KB-станций лучше 10>-8, что означает уходы менее 1 Гц на 100 МГц! Следовательно, дрейф частоты принимаемого сигнала на частотах 2…30 МГц может составлять от 0,02 до 0,3 Гц в худшем случае. Доплеровское смещение, вызываемое движением ионосферы, даже на одном скачке может быть намного больше. Итак, эталоны частоты уже есть в эфире!
«Спектран» можно программно настроить на частоту биений между несущими радиостанций 5 или 10 кГц. Частота выборок должна быть, по крайней мере, вдвое выше частоты биений. В «Спектране» есть частоты выборок 11025 и 22050 Гц. Максимальное разрешение при этом 0,042 и 0,084 Гц. Как показала практика, сетка частот радиовещательных станций на КВ с шагом 5 кГц соблюдается не слишком строго, и приходилось наблюдать частоты биений от 4950 до 5050 Гц или от 9900 до 10100 Гц.
Приемник должен иметь полосу пропускания не менее 5 кГц, а настраивать его надо примерно посередине между несущими частотами станций или с некоторым сдвигом настройки в сторону более слабой станции. Телеграфный гетеродин в приемнике вообще не нужен — для выделения биений включают режим AM. Теперь стабильность его гетеродина не имеет значения, ведь частота биений определяется исключительно частотами двух соседних радиостанций.
Словом, для ионосферных исследований годятся любые дешевые приемники, включая китайские «мыльницы» с веревочным верньером. А уж описанные в нашем журнале детекторные и простые транзисторные приемники, обладая невысокой избирательностью, подходят как нельзя лучше!
Конечно, желательно, чтобы одна из станций была местной, тогда ее сигнал будет чистым и не искаженным ионосферой. К сожалению, такое бывает редко. В случае же двух дальних станций «Спектран» зарегистрирует суммарный доплеровский сдвиг обоих сигналов и суммарное уширение их спектров. Сигналы ведь приходят из разных мест разными путями, и ионосферные возмущения мы наверняка увидим.
Первые же опыты дали замечательный результат. Я выбрал короткие волны с хорошим на тот момент прохождением в 19-метровом диапазоне.
В. Поляков, профессор
>(Продолжение следует.)
ЧИТАТЕЛЬСКИЙ КЛУБ
Вы несколько раз писали о синестезии — способности некоторых людей по-особому воспринимать цвета окружающего мира. А можно ли этому научиться?
Светлана Ковригина, г. Псков
Раньше считалось, что синестезия — врожденная особенность, которая может передаваться по наследству. Однако недавно выяснилось, что специальные тренировки помогают пробудить у человека так называемую цветографемную синестезию.
В переводе с языка науки на обычный цветографемная синестезия означает, что человек видит или чувствует изображение букв или цифр в цвете. Бывает еще и музыкально-цветовая синестезия, когда звуки музыки воспринимаются не только слухом, но еще и в виде непроизвольно проявляющихся цветовых пятен, полос, волн.
Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».
Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).
Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.