Юный техник, 2015 № 06 - [3]

Шрифт
Интервал

«Все знают, что электрический ток, который течет по проводам, переносят электроны, — рассказал журналистам Алексей Кавокин, руководитель проекта с российской стороны. — Информацию кодировать электрическим током можно, но это не очень эффективный способ. Во-первых, приходится ограничиваться двоичным кодом (ток либо включен, либо выключен). Во-вторых, частота, с которой вы можете включать и выключать электрический ток, ограничена. Конечно, сейчас делают очень хорошие высокочастотные переключатели, но все равно вы не можете повышать пропускную способность линий связи до бесконечности, если пользуетесь электрическим током.



Профессор А.В. Кавокин


Идея, которая лежит в основе нашего проекта, — заменить электрон, заряженную частицу, спином в качестве элементарного носителя информации. Спин — это вектор, маленький магнитный момент. Тот же самый электрон — это маленький магнитик, у которого есть магнитный момент, куда-либо направленный. Тут речь уже идет не о двоичном коде, а о выборе направления. Таких направлений может быть бесконечное количество. То есть кодировка спином гораздо выгоднее кодировки зарядом. Кроме того, вы можете вообще избавиться от заряда, потому как спины переносят и электрически нейтральные частицы, так называемые экситоны, которые можно создавать светом в полупроводниковом кристалле.

Если нам удастся вместо электронных или оптических, оптоволоконных линий связи построить линии связи, в которых информация будет закодирована спином этих квазичастиц экситонов, то пропускная способность линий связи увеличится в миллиарды раз»…

По словам профессора А. В. Кавокина, кроме линий коммуникации областью применения экситонов может быть быстрый компьютер, не обязательно квантовый, но, скажем, оптический. А также разного рода новые оптоэлектронные приборы, включая новые лазеры.

Об одном из таких лазеров, так называемом поляритоном, а также о квантовых компьютерах Алексей Витальевич рассказал подробнее.

Свет, как это понял еще Ньютон, — поток частиц, фотонов. Ньютон думал, что это частицы разного цвета. Причем он угадал. Как выяснилось много позже, фотоны действительно могут быть разного цвета. При этом они еще характеризуются разной энергией или разной частотой и длиной волны.

Эти частицы также отличаются от всех других тем, что они невесомые, и если им не мешать, то они распространяются в вакууме с одинаковой скоростью — световой. Однако когда фотоны попадают в вещество, у них, во-первых, может появиться масса. Во-вторых, у них может изменяться скорость — в самом обычном стекле скорость света становится в полтора раза меньше, чем в вакууме. Можно сделать скорость и в миллион раз меньше, и тогда свет пойдет со скоростью пешехода.

В полупроводниковом кристалле свет обрастает некой материальной субстанцией. Это можно себе представить так: фотон летит и поглощается. Всем известно, что свет поглощается в металлах, в металлическом зеркале, но не исчезает и может сразу же вновь излучиться. Тот же самый фотон появляется снова, и поглощается еще раз, и снова излучается. И вы не можете сказать, когда у вас есть свет, а когда у вас есть материальная частица экситон, которая его поглощает.

Получается этакая квантово-механическая смесь света и материальной частицы. С какой-то долей вероятности вы поймаете свет, с какой-то — частицу. Из-за того, что у света появляется этот материальный компонент, он и вести себя начинает почти как нормальная частица, имеющая массу.

Таким образом, экситон — это частица, похожая на атом водорода. У нее есть положительный и отрицательный заряды, поэтому экситоны друг с другом взаимодействуют. Это приводит к вязкости, к так называемым нелинейным оптическим явлениям.

Одно из таких явлений заключается в том, что свет может формировать… сверхтекучую жидкость! Точно так же, как гелий, если его охладить ниже критической температуры порядка 2 градусов Кельвина. Сверхтекучая жидкость проникает в любые поры. Она не имеет вязкости. Также и свет, когда он в кристалле формирует капли светоматериальных частиц (поляритонов), в какой-то момент переходит критическую температуру сверхтекучести и начинает распространяться без всякого трения и вязкости.

Такую «светожидкость» можно использовать для передачи информации, в оптических компьютерах, волоконных линиях коммуникации и даже квантовых компьютерах. И полный список еще не известен.

Сейчас в этой области науки происходит бум. Появляются десятки научных работ. Nature, Science и другие научные журналы каждый месяц публикуют статьи на эту тему.

Для чего все это нужно? Явление сверхтекучести изучается с 30-х годов XX века, сверхпроводимость — с 1911 года. Это интересные явления фундаментальной физики, но они наблюдаются только при очень низких температурах. А материальные частицы света такие легкие, что все критические температуры фазовых переходов для них становятся в десятки, сотни раз выше. Поэтому световую жидкость можно получать при комнатной температуре, а значит, ее можно использовать хоть на кухне, хоть в народном хозяйстве.

«Еще одно из новых применений — так называемый поляритонный лазер. Где он может пригодиться, даже нам пока не дано предсказать. Ведь работы над проектом только начаты. Наша лаборатория еще в стадии формирования. Мы набрали около 25 сотрудников, включая студентов, начали закупать оборудование, являющееся уникальным, — с его помощью будем ставить эксперименты, которые никто в мире еще не делает», — закончил свой рассказ А. В. Кавокин.


Еще от автора Журнал «Юный техник»
Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.