Юный техник, 2015 № 02 - [6]

Шрифт
Интервал

«Дифракционный барьер установлен где-то в пределах 200–250 нм — рассказал журналистам доктор биологических наук, заведующий лабораторией Института биоорганической химии РАН Константин Лукьянов. — Флуоресцентная микроскопия преодолевает этот предел, достигая разрешения 20–25 нм, то есть на порядок больше. Это позволяет видеть отдельные структуры, причем в живых клетках, где можно увидеть какие-то внутриклеточные процессы».

Технологически это решается двумя разными способами, но если не вдаваться в детали, суть тут такова. Исследователь вносит в клетку флуоресцентную метку, помечая при этом какую-то определенную структуру, какой-то белок или какое-то событие в клетке. Флуоресцентный краситель при этом возбуждается светом и испускает свет другой длины волны. Например, вы светите синим, а флуоресценция у вас зеленая.

Во флуоресцентном микроскопе есть источник возбуждающего света, система фильтров и детектор. В итоге многие процессы, которые раньше было невозможно увидеть, теперь стали видимыми. За это нужно сказать спасибо Стефану Хеллу. В 1993 году, работая в Финляндии, в Университете Турку, он придумал, как усовершенствовать флуоресцентный микроскоп.

Исследователь предложил использовать два лазера, направленных на образец. Импульс первого лазера вызывает флуоресценцию молекул, а импульс второго — гасит ее у молекул, находящихся на краях изучаемой области. В итоге по центру получается изображение с большим разрешением. В дальнейшем, сдвигая изучаемую область, можно увидеть изображение всего объекта с превосходящим предел Аббе разрешением.

Статья Стефана Хелла, опубликованная в 1994 году в журнале Optics Letters, обратила на себя внимание других исследователей. Ему предложили работу в Институте биофизической химии Общества Макса Планка в Геттингене, где он мог бы реализовать свои теоретические предположения на практике.

Ученый сделал это к 1999 году, построив особый микроскоп. Его метод известен сейчас под названием «STED-микроскопия» (Stinulated Emission Depletion — микроскопия на основе подавления спонтанного испускания). В 2000 году он опубликовал изображения бактерии Escherichia coli с невиданным ранее разрешением.

Другое направление независимо от Хелла развивали американские исследователи Эрик Бетциг и Уильям Мернер. Они разработали методы одномолекулярной флуоресцентной микроскопии (single-molecule fluorescence microscopy).

Обычно при изучении флуоресценции, в частности при использовании этого явления в микроскопии, мы имеем дело с поглощением и испусканием излучения сразу множеством молекул. В 1986 году Мернер сумел впервые измерить поглощение излучения одной-единственной молекулой. Через 8 лет он сделал следующий шаг в своих исследованиях, занявшись изучением зеленого флуоресцентного белка (green fluorescent protein, GFP). При этом он обнаружил, что флуоресценцию в одном варианте GFP можно «включать» и «выключать» по желанию.

Когда белок поглощает свет с длиной волны 488 нм, флуоресценция начинается, но спустя некоторое время исчезает. И, независимо от количества света, направляемого на белок, ответного излучения не возникает. Но, если использовать свет с длиной волны 405 нм, то молекула белка снова начинает флуоресцировать.



Схема работы люминесцентного микроскопа.



Так выглядит клетка в тот момент, когда испускает свечение.



Снимки микрообъектов, полученные при помощи флуоресцентной микроскопии.


Мернер распределил эти молекулы GFT в геле так, чтобы расстояние между каждой отдельной молекулой было больше, чем дифракционный предел Аббе. Из-за того, что они были рассеяны столь редко, микроскоп оказался в состоянии регистрировать свечение отдельных молекул. О своей работе Мернер рассказал в журнале Nature в 1997 году.

Полученные Мернером результаты помогли Эрику Бетцигу. Он догадался, что если микроскоп будет регистрировать излучение молекул с определенной длиной волны, рассеянных в образце не ближе друг к другу, чем 0,2 мкм (приблизительная величина предела Аббе), то положение может быть определено с высокой точностью. Если же в образце будут молекулы с разными свойствами, например, дающие при флуоресценции ответное излучение с разной длиной волны, то можно сделать отдельные картины распределения каждого «вида» молекул. После этого можно, накладывая изображения друг на друга, добиться разрешения, превышающего предел Аббе. Молекулы будут различимы, даже если расстояние между ними составит всего несколько нанометров.

Эти идеи Бетциг высказал в своей публикации в журнале Optics Letters в 1995 году, но реализовать их казалось невозможным, так как не находилось молекул с нужными свойствами. Бетциг на некоторое время оставил академическую деятельность, но продолжал следить за публикациями и вернулся к работе в области микроскопии, как только узнал об исследованиях GFP. К 2005 году он разработал свой метод преодоления предела Аббе. Молекулы не испускали свет разного цвета, как он предполагал ранее, а начинали светиться в разные моменты времени. Этого оказалось достаточно, чтобы получить набор изображений, из которых сложится одно — уже со сверхвысоким разрешением. Метод получил название «микроскопия локализованной фотоактивации».


Еще от автора Журнал «Юный техник»
Юный техник, 2013 № 02

Популярный детский и юношеский журнал.


Юный техник, 2012 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2015 № 11

Популярный детский и юношеский журнал.


Юный техник, 2015 № 09

Популярный детский и юношеский журнал.


Юный техник, 2015 № 01

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 01 (8)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Интернаука №16 ((часть2) 2020

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Как музыка стала свободной

"Как музыка стала свободной" представляет из себя захватывающую историю, в которой переплелись между собой одержимость, жадность, музыка, преступность и деньги. История эта рассказывается через визионеров и преступников, магнатов и подростков, создающих новую цифровую реальность. Это история о величайшем пирате в истории, самом влиятельном руководителе в музыкальном бизнесе, революционном изобретении и нелегальном сайте, который по своим размерам превосходил iTunes Music Store в четыре раза.Журналист Стивен Уитт отслеживает тайную историю цифрового музыкального пиратства, начиная с изобретения немецкими аудио-инженерами формата mp3, ведет читателя через завод в Северной Каролине, где печатались компакт-диски и с которого один из работников слил в сеть за десятилетие примерно 2 000 альбомов, к высоткам на Манхэттене, откуда музыкальным бизнесом правил могущественный Даг Моррис, монополизировавший мировой рынок рэп-музыки, и оттуда в глубины интернета - даркнет.