.
Собранная информация стекается на мониторы местного центра МЧС. И когда случается чрезвычайная ситуация, оператор тут же принимает меры — дает команду спасателям. Спасатели же должны иметь в своем распоряжении, кроме прочего оборудования, и устройство, которое предлагает Михаил.
Оно представляет собой нечто вроде мини-катера, подобного тому, что предложен В. М. Ефимовым. Управляемый по радио, он быстро домчится к тонущему, затормозит возле него и позволит человеку уцепиться за страховочный фал или попросту взобраться на борт спасательного средства.
Если же на месте происшествия выясняется, что горе-пловец уже успел наглотаться воды и ушел на дно морское, катер превращается в мини-подлодку. Его балластные цистерны заполняются водой, и судно-спасатель тоже уходит под воду. При этом ультразвуковые сенсоры обшаривают окрестности в поисках потерпевшего. И как только он будет обнаружен, спасатель направляется к нему. А там в зависимости от конкретной ситуации либо подныривает под него, либо с помощью двух механических рук переносит пострадавшего на дно подлодки-катера. После этого следует срочное всплытие на поверхность, где робот-спасатель призывает по радио своих коллег из МЧС с указанием GPS-координат происшествия.
Не только в нашей стране изобретатели работают над подобными проблемами. Спасательное судно-робот «Брюс» разработано командой студентов из Квинслендского технологического университета Австралии для состязания Google Mari-time RobotX Challenge, которое регулярно проводится в Сингапуре.
Спасательный катер австралийских студентов.
«Как и самолеты на автопилоте, современные автономные лодки могут добраться из точки А в точку Б. Однако до недавнего времени они были не способны работать в изменяющемся окружении, в котором может произойти что угодно, — говорит консультант группы доктор Мэтт Данбебин. — Новое же поколение умных лодок станет первым, способным выполнять поисково-спасательные работы в штормовую погоду, когда спасателям слишком опасно выходить в открытое море».
Пока команда из Квинсленда не раскрывает деталей, как устроено и работает их судно-робот. Известно лишь, что «Брюс» должен будет выполнить пять специализированных заданий, чтобы выиграть и получить дополнительное финансирование. Среди них — лавирование между плавучими маркерами, автономная швартовка, прокладка курса через бурные волны, распознавание морских сигналов и обнаружение цели, находящейся под поверхностью воды.
Пока еще никому не удалось создать робота, который бы полностью заменил спасателей и выполнял их работу на достаточно высоком уровне. Однако сам факт, что эти прототипы существуют, означает, что подобные роботы, оперативно доставляемые на место ЧП с помощью вертолетов или самолетов, вскоре могут оказаться полезными при спасении людей после кораблекрушения, а также при падениях самолетов в море.
Кстати…
ОН НИЧЕГО НЕ БОИТСЯ…
Резиновый робот-ползун, созданный гарвардскими учеными, не боится ничего. Устройство стоимостью всего 1 100 долларов может выдержать вес машины, двигаться сквозь огонь, по воде и снегу, говорится в статье, опубликованной в журнале Soft Robotics.
Несколько лет назад инженеры из Гарвардского университета уже представляли публике модель ползающего робота, использующего для движения энергию сжатого воздуха. Особые клапаны позволяли гонять воздух по телу устройства и шевелить его ногами. Однако недостатком ползуна была его привязанность к источнику сжатого воздуха, с которым его соединяли гибкие шланги. Теперь инженеры под руководством Джорджа Уайтсайдса усовершенствовали робота, снабдив его собственным питанием и насосами, которые сделали устройство автономным.
Робот выполнен из очень прочной резины, что допускает его эксплуатацию при низких температурах, ветре до 40 км/ч, лужах глубиной до 5 см и кратковременное пребывание в огне при температуре до 3 000 °C. По нему может даже проехать машина, и ползун продолжит движение, если только система управления и насосы останутся неповрежденными.
Кроме того, резиновая оболочка защищает устройство от агрессивной химической среды. Встроенные аккумуляторы позволяют роботу самостоятельно двигаться и сохранять работоспособность до 2 часов. Он может передвигаться несколькими способами, поворачивать и двигаться по прямой со скоростью 18 м/ч.