Юный техник, 2006 № 07 - [4]

Шрифт
Интервал



Демонстрационные гравиметры специально сделаны довольно большими, чтобы можно было в деталях рассмотреть их устройство.


Противоборствуя помехам

Однако мы забежали вперед. С помощью первых гравиметров исследователям удалось лишь уточнить форму Земли. Да и то не очень точно. Чтобы провести дальнейшие исследования, ученым необходимо было резко повысить точность измерений. К слову, сейчас они ведутся с точностью 10>-8—10>-9, по крайней мере, не хуже, чем 10>-6.

Понять сложность задачи можно на примере. Идет по морю корабль. Глубина под ним примерно километр. Но капитан хочет знать глубину с точностью до миллиметра. И прибегает, скажем, к помощи эхолота. Но прибор сам имеет какую-то погрешность, да еще корабль бросают то вверх, то вниз гигантские волны. В общем, помехи в работе Железняка и его коллег исключительно велики.

Во-первых, Земля, как сказано, не круглая, да к тому же неровная — там горы, здесь — низменности. При этом две трети земного шара залиты водой, а рельеф океанского дна долгое время был тайной за семью печатями.

Во-вторых, та же Луна гоняет по поверхности нашей планеты волны приливов. Причем не только по воде, но и по суше. Мало кто знает, что земная кора под влиянием притяжения естественного спутника нашей планеты ежесуточно поднимается и опускается с амплитудой примерно в полметра.



Примерно так выглядит лаборатория гравиметрии.


В-третьих, сама по себе земная твердь только так называется. На самом деле она все время «дышит» — в ее недрах постоянно происходят разного рода сейсмические процессы, влияющие среди прочего и на геометрию планеты.

В-четвертых, приборы, работающие с миллионной точностью, могут сбиваться, что называется, даже от пристального взгляда. А уж колебания температуры, атмосферного давления и прочих параметров они чувствуют куда острее любого ревматика или гипертоника.

И это еще далеко не полный перечень помех. Не будем его продолжать, а лучше поговорим о том, как специалисты смогли их одолеть.



Упрощенная схема современного гравиметра.


Здесь уместна аналогия с историей часов. Помните, когда человечество перешло от солнечных, водяных и песочных часов к механическим, первые «ходики» размещались в городских башнях — настолько громоздки они были. Со временем часы с маятником мастера смогли уменьшить до таких размеров, что они стали помещаться в обычном доме; бабушкины часы с кукушкой — наглядный тому пример. Но сейчас ими редко кто пользуется; в ходу больше даже не карманные, а наручные часы — механические, кварцевые или электронные.

Примерно такой же путь совершенствования прошли и магнитометры. Трубу со свободно падающим шариком в конструкции гравиметра заменил сначала качающийся маятник, период колебаний которого зависит от силы земного тяготения, а затем и шарик, подвешенный на пружинке тоже своего рода балансир.



Один из первых гравиметров именно так и выглядел — вертикальная трубка, в которую бросали шарик, и засекали время, которое ему требовалось для того, чтобы пролететь от верхнего конца к нижнему.


Однако если просто подвесить шарик весом в 1 грамм на тоненькой пружинке, он будет колебаться в первую очередь отнюдь не от изменения силы тяжести, а от одной (или совокупности) тех помех, о которых шла речь выше. Так что пришлось нашим ученым и конструкторам придумывать всевозможные ухищрения, чтобы от них «отстроиться».

Для того чтобы шарик не чувствовал: вибраций, его закрепляют на растяжках из кварцевых нитей, помешают в специальную жидкость, от одного названия которой у вас может закружиться голова, но которая обладает множеством достоинств — она не меняет своего состава на протяжении многих лет, практически не меняет свою плотность при изменении температуры, является идеально прозрачной, так что не мешает наблюдениям и т. д.

Кроме того, всю эту систему помещают в герметичный корпус, термостатируют, размещают на специальной гироплатформе, призванной сохранять стабильность при возможных сотрясениях. Добавьте сюда еще приспособления для снятия информации, преобразования ее в форму, удобную для компьютера, устройства для юстировки — настройки системы — и вы поймете, почему работы по созданию и усовершенствованию гравиметров велись не год и не два…


В целях практической необходимости

Теперь давайте поговорим о том, для чего все это надо. В конце концов, уточнение формы Земли — не такая уж насущная проблема, чтобы заниматься ею многие десятилетия…

В лаборатории, где мы разговаривали с Л.K. Железняком, висит на стене огромная карта земного шара. На ней показаны не только возвышенности и низменности, имеющиеся на суше, но и все подробности рельефа морского дна. Имеется тут и еще одна карта, густо испещренная сетью загадочных точек.

Причем одну из этих точек мне довелось увидеть собственными глазами — прямо на полу лаборатории красовался медный кружок с выбитыми на нем цифрами. Оказалось, что таким образом обозначено место, где местная величина гравитации измерена с особой тщательностью.

К этим точкам, подобно геодезистам, гравиметристы и «привязывают» свои текущие измерения. А для того чтобы их сделать, по всему миру отправляются специальные экспедиции с установленными на самолетах, кораблях, автомобилях и прочих средствах транспорта гравиметрами.


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2011 № 06

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2004 № 11

Популярный детский и юношеский журнал.


Юный техник, 2005 № 05

Популярный детский и юношеский журнал.


Юный техник, 2006 № 03

Популярный детский и юношеский журнал.


Юный техник, 2006 № 11

Популярный детский и юношеский журнал.


Юный техник, 2007 № 12

Популярный детский и юношеский журнал.


Юный техник, 2010 № 02

Популярный детский и юношеский журнал.