Юный техник, 2005 № 03 - [15]

Шрифт
Интервал



Вот что я конкретно имею в виду. Давайте посмотрим на камеру сгорания, куда входит кончик свечи зажигания с контактами. Между контактами этими проскакивает искра, поджигая воздушно-топливную смесь. Огонь лижет стенки камеры сгорания, а в центр камеры сгорания попадает по спирали. При этом центром является положение поршня в верхней мертвой точке. Как только поршень этой точки достигает, дальше огонь распространяется равномерно во все стороны. Таким образом, весь процесс горения можно разделить на две стадии: асимметричное горение по спирали до центра и симметричное — во все стороны от него.

При этом горение заканчивается не с той скоростью, с которой началось, а с гораздо более высокой, на грани детонации. Детонационная же волна распространяется со скоростью около 2 км/с, то есть быстрее звука. Так что когда горение заканчивается в одном краю камеры сгорания, поршень получает сильный удар, его может и заклинить.

Неравномерность горения позволяет объяснить и почему двигатель плохо тянет, когда холодный, и почему мотор боится нагрузки, а перед этим он, как говорят автомобилисты, «козлит», поскольку происходит кратковременное заклинивание поршня.

В общем, таким образом было получено объяснение, почему ДВС обычно плохо работает при больших нагрузках и малых оборотах. Да и на высоких оборотах дело обстоит немногим лучше. Хоть камера сгорания по виду и мала, но если разложить весь путь горения по спирали, то получается, что камера как бы искусственно удлиняется в 3,5 раза.

На больших оборотах это обстоятельство заставляет поджигать смесь задолго до верхней мертвой точки. Тепловая энергия начинает выделяться еще в фазе сжатия, когда поршень только идет вверх, и таким образом препятствует его работе. А раз так, то, значит, мы теряем КПД, крутящий момент уменьшается.

Опытным путем двигателисты постарались снизить подобные потери, ограничив угол опережения зажигания. Но это опять-таки приводит к потерям: смесь не успевает полностью сгорать в камере и догорает уже в выхлопной трубе…

В итоге мы имеем, что имеем: чем выше скорость автомобиля, тем больше расход топлива. Выход из положения, когда во всем этом разберешься, кажется очевидным. Смесь нужно поджигать в центре цилиндра. Тогда повысится КПД.



В истории ДВС известны случаи, когда смесь поджигали в центре цилиндра с помощью длинной свечи. Однако при этом для поджига требовалось напряжение в 100 киловольт. Свеча долго не выдерживала, перегорала.

Тогда я подумал: «А зачем дотягиваться в центр материально, когда можно использовать нечто вроде направленного взрыва?» Появилась новая конструкция свечи, отличающаяся от обычной лишь тем, что в ней вокруг искрового промежутка ставится специальная конусная насадка, которая и формирует условия для направленного микровзрыва.

Получилось нечто вроде миниатюрной дюзы ракетного двигателя. Свеча дает короткий мощный факел, который попадает в центр. И дальше горение распространяется равномерно во все стороны. При этом, как показал опыт, даже на скорости в 170 км/ч расход бензина практически остается таким же, как и при езде, скажем, при 50 км/ч. Более того, чем выше скорость автомобиля, тем выше экономический эффект.

Новая свеча позволяет повысить и мощность двигателя. Ведь все мы сегодня ездим практически на заклиненных поршнях. Если же «клин» исчезает, автомобиль становится намного динамичнее.

Меняется и экология автомобиля. Обычно на холостом ходу ДВС работает очень плохо, топливо сгорает не полностью. Но как только мы устанавливаем «венчик» на свечи, расход бензина сокращается в 3–4 раза. А двигатели с электронным впрыском топлива показали увеличение эффективности холостого хода даже в 6–7 раз.



Рассказ записал Владимир БЕЛОВ


Кстати…

ИСКРА В ДОПОЛНЕНИЕ

Пока публикация готовилась к печати, Е.С. Бугаец ознакомил общественность с еще одним своим изобретением. «Новая разработка является дополнением к прежнему изобретению, — пояснил он. — Суть его заключается в том, что параллельно искровому зазору включается конденсатор; возникнет искра, он должен быть заряжен до пробивного напряжения».

Конденсатор запасает солидное количество энергии, и когда происходит пробой, сила искры резко возрастает. Топливо загорается в любом случае, как при чересчур богатой, так и при чрезмерно обедненной смеси.

«Лично я поставил такой конденсатор на всем известную «Оку», которая не отличается особой приемистостью, и стал на ней свободно развивать скорость порядка 120 км/ч, обгоняя многие более мощные автомобили, — продолжал Бугаец свой рассказ. — Кроме того, мощная искра позволяет легко заводить мотор даже в сильные морозы, обеспечивает высокую экологичность по европейским нормам»…

Сама по себе установка конденсатора в схему зажигания не новинка. Однако до недавних пор подобные конденсаторы служили очень недолго, их быстро пробивало. Бугайцу и его коллегам удалось создать такой конденсатор, который выдерживает большие напряжения и температуры, огромные вибрации, удары, мороз в зимнее время и жару летом, кислоты и масла…

Новый конденсатор построен на основе силикона. Однако у этого замечательного материала есть свой дефект — у него малая диэлектрическая постоянная. Поэтому создать приличную емкость на силиконе довольно сложно. Специалистам удалось получить пластины площадью 33 кв. см и толщиной в 1 мм, которые выдерживают пробивное напряжение и не разрушаются сами. Для этого пришлось тщательно «вылизать» весь технологический процесс. Маленькая пылинка, пузырек или заусенец на одном из электродов — и пробой происходит уже при 5 — 10 киловольтах. Сейчас все трудности позади, создан промышленный образец и налажено мелкосерийное производство новых конденсаторов.


Еще от автора Журнал «Юный техник»
Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2004 № 04

Популярный детский и юношеский журнал.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.