Тем не менее, они надеются, что «Симулятор Земли» с такой задачей справится. Ныне основным методом прогнозирования является разбивка поверхности Земли на прямоугольные ячейки с длиной стороны примерно в 100 км, для каждой из которых делают специальный расчет. А новый суперкомпьютер позволит уменьшить размеры этих квадратов в 10 раз, что позволит детальнее изучать и прогнозировать тайфуны и торнадо сравнительно небольших размеров.
Уже первые испытания дали поразительные результаты. На основании имеющихся климатических моделей суперкомпьютер в считанные минуты рассчитал возможное направление, время и место появления тайфуна. Однако он не может справиться пока с отслеживанием перемен погоды по всей планете — для этого не хватает программного обеспечения и мощности самого компьютера.
«Для того чтобы составить подобные программы, потребуются одновременные усилия программистов всей Земли, — считает Луис Кормблю, сотрудник Института метеорологии имени Макса Планка в Гамбурге. — И то, скорее всего, многое придется упрощать, а то и попросту создавать еще более мощный суперкомпьютер»…
Понимая это, корпорация Intel создала недавно опытные образцы микропроцессоров, размер транзисторов в которых составляет всего 90 нанометров (нанометр — одна миллиардная доля метра). Их промышленный выпуск начнется в 2003 году. В технологическом процессе впервые используется так называемый «напряженный» кремний, атомы которого в кристаллической решетке «прорежены», что обеспечивает более свободное протекание тока и позволяет повысить быстродействие транзистора. Кроме того, в конструкции использованы также медные соединения с новым диэлектриком — легированным углеродом оксидом кремния с низкой диэлектрической проницаемостью, благодаря чему повышается скорость распространения сигнала в кристалле и снижается энергопотребление процессора. Применение нанотехнологий, уже отработанных компанией на более простых чипах синхронной памяти SRAM емкостью 52 МБ, позволит производить процессоры с тактовой частотой, превышающей 3 ГГц, и уменьшить их размеры вдвое. В итоге одиночный транзистор в этой микросхеме в 2000 раз меньше толщины человеческого волоса.
Его диаметр не превышает 50 нанометров.
Перейдя на новый технологический процесс, корпорация на время посрамила скептиков, сомневающихся в том, что так называемый закон Мура будет действовать в обозримом будущем. Этот «закон», который Гордон Мур, один из отцов-основателей Intel, сформулировал в 1965 году и считал не более чем «эмпирическим правилом», гласит, что количество транзисторов, которое вмещает интегральная схема, будет возрастать вдвое каждые 18 месяцев. Теоретически это означает существенное, на десятки процентов, увеличение производительности каждого нового поколения чипов.
Если в первом промышленном процессоре Intel 4004 было всего 2300 транзисторов, то в современных Pentium IV их уже более 55 млн., а в новом процессоре их число превысит 100 млн.
Сам Мур, впрочем, полагал, что конец этой закономерности может положить сама природа: едва ли можно создать микрочипы, размеры элементов которых будут менее 0,25 микрона. И хотя он несколько ошибся: 90-нанометровый транзистор — уже третье «размерное» поколение после чипов, созданных по технологии 0,25 микрона еще пять лет назад, — уже действительно виден предел. Еще чуть-чуть — и мы попадаем в диапазон атомных размеров, где все подчиняется необычным квантовым правилам.
А открытие, о котором сообщил журнал «New Scientist», было сделано, можно сказать, на кончике пера, точнее даже — в голове одного из теоретиков. Ход его рассуждений был примерно таким.
Как известно, любая частица — будь то электрон или фотон — способна переносить один бит информации. Так что если научиться манипулировать частицами, которые то и дело пронизывают космическое пространство, можно будет выполнять любые расчеты. Именно этого и хотят добиться ученые, замыслившие построить так называемый квантовый компьютер.
«При этом очевидно, что предельный компьютер — это такой, в котором задействованы все частицы Вселенной, — рассуждал Сет Ллойд, специалист в области квантовых вычислений, работающий в Массачусетском технологическом институте. — Вот я и подумал, что неплохо было узнать его возможности».
Для начала он рассчитал, что количество частиц во Вселенной, а стало быть, и общее количество информации, которое они смогут хранить, составляет 10>90 бит. Число логических операций, которые могут быть произведены над этими битами, зависит от имеющейся энергии, необходимой для выполнения операций, скорости света, влияющей на быстроту перемещения информации, и времени работы — то есть от возраста Вселенной.
Проделав необходимые вычисления, ученый получил максимальное количество логических операций, которое могла выполнить Вселенная с момента Большого взрыва, — около 10>120. Такая величина куда больше гугола — фантастического числа, придуманного математиками и составляющего «всего» 10>100.
Для сравнения: количество бит, которое может быть сохранено всеми компьютерами Земли, ныне составляет около 10>21, а число выполненных логических операций едва дотягивает до 10