ОТКУДА БЕРЕТСЯ МЕТАН? Раньше полагали, что запасы природного газа метана связаны преимущественно с нефтяными залежами. Однако пять лет назад российские и швейцарские геологи открыли скопления природного газа в подземных горизонтах, где нефти мало, но циркулируют горячие солевые растворы.
Н.В. Верховцева, доктор биологических наук из Московского государственного университета им. М.В. Ломоносова, полагает, что горючий газ выделяют архебактерии, живущие в подземных водах. Это подтверждают исследования пластовых вод, взятых из Воротиловской глубокой скважины в 70 км к северу от Нижнего Новгорода. В образцах, отобранных с глубин от 1,5 до 4,5 км, обнаружили архебактерии, выделяющие метан. Они живут при температуре от 30 до 80 °C в растворах, насыщенных хлоридными и сульфатными солями кальция, натрия и магния.
КАБЕЛЬ, КОТОРЫЙ НЕ ГОРИТ, разработан в Научно-техническом центре кабельной промышленности (ОАО «ВНИИКП»). Его изоляция способна не разрушаться как минимум 3 часа при температуре 1000 °C! Это достигается применением в качестве изоляции слюдяной ленты элмикатекс. Первая партия новых кабелей выпущена на Подольском кабельном заводе для вагонеток на электрической тяге, которыми сгружают руду в плавильные печи. В дальнейшем их предполагается прокладывать всюду, где есть опасность разрушения сетей электропитания из-за повышенной температуры. К сказанному остается добавить, что наши кабели втрое дешевле импортных, хотя и не уступают им по качеству.
БАКТЕРИИ ПРОТИВ ЯДА. Российские ученые из Института микробиологии под руководством члена-корреспондента РАН Г. И. Каравайко выделили микроорганизмы, устойчивые к высокой концентрации цианидов — одного из самых токсичных соединений на Земле, применяющихся на золотодобывающих предприятиях и гальванических производствах. Теперь цианистые стоки промышленных предприятий можно обезвреживать с помощью этих микроорганизмов, которые быстро разлагают яд на безвредные вещества.
УВИДЕТЬ АРТЕРИАЛЬНОЕ ДАВЛЕНИЕ позволяет компьютерный тахоосциллоскоп СКАД-2, разработанный московскими специалистами из ООО «Констэп-МТ». Этот небольшой приборчик, в отличие от обычных устройств для измерения артериального давления, дает возможность подключения к персональному компьютеру. На экране дисплея при этом тотчас появляется характерная кривая, помогающая врачу лучше диагностировать возможное заболевание пациента.
КОСМИЧЕСКИЙ ТОМОГРАФ, позволяющий ежедневно измерять толщину озонового слоя, создали ученые Московского инженерно-физического института. «С помощью нового прибора мы видим атмосферу и все ее неоднородности, в том числе и озонные дыры, подобно тому как врач видит на экране томографа внутренние органы человека», — сказал один из разработчиков прибора, Владимир Ворог. Принцип же работы прибора в том, что он регистрирует мощность и направление движения частиц мюонов, приходящих из космоса и пронзающих атмосферу Земли, подобно тому как рентгеновские лучи проходят сквозь тело человека.
ПРЕМИИ
Конденсат Бозе-Эйнштейна получен. Зачем он нужен?
Решения, принимаемые Нобелевским комитетом, нередко подвергаются и критике. Скажем, наиболее серьезные нарекания вызывает тот факт, что премий, как правило, удостаиваются весьма пожилые ученые за работы, которые они выполнили 20–30 лет, а то и полвека назад.
И вот в нынешнем году, в столетний юбилей самой престижной научной премии мира, произошло приятное исключение. Лауреаты 2001 года в области физики относительно молоды — самому старшему из них 50 лет, а младшему — 39. А отмеченные премией работы были выполнены на протяжении последних шести лет.
В погоне за пятым состоянием
Все трое физиков-лауреатов — американцы Эрик Корнелл и Карл Вейман и немец Вольфганг Кеттерле — работают в США. В пресс-релизе Нобелевского комитета сказано, что они удостоены премии за получение конденсата Бозе — Эйнштейна в разреженных газах из атомов щелочных металлов и за исследование свойств этого конденсата.
Говоря проще, речь идет об исследованиях особого, пятого, состояния вещества, добавившегося совсем недавно к известным — твердому, жидкому, газообразному и плазменному.
Принципиальная возможность перевода вещества в такое состояние при охлаждении до температур, вплотную приближающихся к абсолютному нулю, была предсказана индийским физиком Ш. Бозе и знаменитым А. Эйнштейном еще в 1924 году. Однако получить конденсат на практике физикам удалось лишь 6 лет назад. Главная проблема заключалась в том, чтобы добиться глубокого охлаждения вещества. Температуру газа следовало довести до уровня, всего на несколько стомиллионных долей градуса превышающего абсолютный нуль.
Для достижения таких температур обычные холодильники, конечно, не годятся. И даже турбодетандеры, сжижающие гелий, азот и другие газы, не помогут. В конце концов решили использовать комбинации двух методов глубокого охлаждения, разработанных относительно недавно: лазерного охлаждения и охлаждения испарением.
Экспериментаторы тормозили атомы газа магнитными ловушками, затем замедляли их движение, заставляя продираться сквозь густосплетение множества лазерных лучей. А далее, опять же лазерным лучом, отгоняли самые быстрые горячие атомы, пока не осталось сколько-то окончательно замерзших, обездвиженных. Полученный таким образом конденсат представлял собой висящее в магнитно-оптической ловушке газовое облачко, состоящее из 2000 атомов рубидия. Причем облачко это имело температуру, лишь на две стомиллионных доли градуса превышавшую абсолютный нуль.