Юный техник, 2001 № 12 - [2]

Шрифт
Интервал

Сотрудникам же ВИАМа «сотка» запомнилась тем, что при ее изготовлении им впервые в мировой практике пришлось осваивать технологию сварки титана. Его, как и алюминий, обычными методами не сварить. Вот и пришлось для сварки строить особый заводской корпус, создавать скафандры для сварщиков, которым приходилось работать в специальной атмосфере.

Ничего, справились. Титановые шасси и по сей день умеют делать только в России. А технология создания титановых баков потом пригодилась при строительстве первых космических аппаратов.



«Измерительной технике ВИАМа могут позавидовать многие научные учреждения страны», — рассказывает директор ВИАМа Е.Н. Каблов.


3. Разумные материалы

Ныне все чаще при изготовлении новых летательных аппаратов применяют не металл, а композитные материалы. И тут сотрудники ВИАМа сказали свое веское слово. Вспомним хотя бы эпопею с созданием космического челнока «Буран» в конце 80-х годов XX века. Знаменитые термоизоляционные плитки, которыми была обклеена нижняя часть космического самолета, создавались здесь же, в ВИАМе. Причем, как показали позднейшие сравнительные испытания, наша плитка оказалась лучше, чем у американцев. Хотя пришлось ее создавать буквально с нуля.

— Ее главная особенность — плитка состоит на 93 % практически из воздуха, — пояснил руководитель одного из научно-технологических комплексов ВИАМа Г.М.Гуняев. — Остальное приходится на кварцевые волокна. Только для одного такого летательного аппарата понадобилось 38 000 таких плиток. Носки же крыла и фюзеляжа, где уже и плитка не выдерживала нагрева, были выполнены из тугоплавкого графитового материала.

Ныне сотрудники ВИАМа шагнули еще дальше. Нам продемонстрировали детали из материала «тигр». Название экзотическое, но логичное: так называется композит на основе ТИтана и ГРафита.

Сейчас авиаконструкторы ведущих стран мира напряженно работают над созданием истребителя пятого поколения. В частности, в скором будущем наши специалисты намерены продемонстрировать своим зарубежным коллегам свои перспективные машины Су-49 и Су-52, целиком выполненные из композитов на основе углерода. Материалы для них успешно проходят испытания в конструкции экспериментальной машины ОКБ им. П.О. Сухого с крылом обратной стреловидности С-37 «Беркут».

— В основе конструкции лежат так называемые интеллектуальные материалы, которые самостоятельно откликаются на физические воздействия, — пояснил профессор Георгий Михайлович Гуняев. — Например, крыло меняет свою форму таким образом, чтобы наилучшим образом соответствовать данным аэродинамическим условиям, оптимизировать угол атаки независимо даже от воли летчика, автоматически. В итоге удается избежать сваливания в штопор и прочих неприятностей…

Причем новые материалы проявили себя наилучшим образом при полетах не только в дозвуковом, но и в сверхзвуковом режимах. Накопленный опыт теперь используется и для изготовления крыльев больших самолетов. Законцовки плоскостей выполняются на них из композиционных материалов и работают таким образом, чтобы снизить нагрузки на корневую часть крыла. Только за счет этого удалось облегчить летательный аппарат на 3500 кг.



Исходным материалом для изготовления композитов может послужить и стеклоткань.


4. Открытия для покрытий

Профессор Эдуард Константинович Кондрашов рассказал нам об авиационных покрытиях. Казалось бы, невелика хитрость — покрасить самолет. Однако даже для забора надо правильно подобрать краску. Что же тогда говорить о летательном аппарате?

Вот лишь перечень некоторых требований к авиационному покрытию. Оно должно надежно держаться на покрываемой поверхности во всем диапазоне температур и скоростей. Предохранять поверхность от коррозии. Не ухудшать, а хорошо бы — улучшать аэродинамическое обтекание машины. Не быть тяжелым — а то ведь только при окраске самолет может потяжелеть на 200–300 кг.

И это примерный набор лишь так называемых общих требований конструкторов. А есть еще и специальные. Например, чтобы покрытие обеспечивало малую радиозаметность машины, поглощало и рассеивало лучи радаров. Чтобы краска еще и от радиации защищала… или меняла цвет при изменении температуры… И сотрудники ВИАМа не теряются.

— Нам приходится иметь дело практически со всей таблицей Д.И. Менделеева, — подвел итог своему рассказу Э.К. Кондрашов. — Да и бионикой тоже интересуемся: как, скажем, работает механизм изменения окраски у того же хамелеона, что у него можно позаимствовать?..

И это лишь одно из перспективных направлений. Из других отметим хотя бы использование волокон в авиационных конструкциях. Говоря упрощенно, некоторые детали и узлы авиационной техники в будущем намерены… ткать, подобно тому, как ткут ныне ткани. И такие материалы обещают быть еще прочнее нынешних композитов, в их структуру еще в процессе изготовления будут закладывать всевозможные датчики и микроэлектронные устройства. Ну а там, глядишь, дойдут и до того, чтобы выращивать из расплавов не только лопатки турбин, но и готовые узлы, и даже целые машины. Последние достижения нанотехнологии позволяют на это надеяться.

И можно быть уверенными, одними из первых в мире эти новинки опробуют, начнут активно использовать сотрудники Государственного научного центра «Всероссийский институт авиационных материалов».


Еще от автора Журнал «Юный техник»
Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.