Юный техник, 2001 № 01 - [12]

Шрифт
Интервал


Вычислим емкость нашей планеты, радиус которой, как известно, составляет около 6400 км, или 64 00х10>3х10>2 см:

С>з.ш.= 4peR>1 = 4x3,14x0,88·10>-13x6400·10>3x10>2h 700mF.

Как видим, емкость земного шара при чистом небе и космосе совсем не велика, в запасах любого радиолюбителя наверняка найдется электролитический конденсатор в 1000 и даже 5000 микрофарад.

Однако бывают и тучи. Пусть на высоте в 5 км грозовыми облаками покрыт квадрат 10х10 км. В этом случае можно не учитывать кривизну Земли и использовать при определении емкости между почвой и облаком формулы плоского конденсатора (см. рис. 1б).


т. е. 0,17 микрофарады. Совсем небольшая емкость, не правда ли?

Какую же энергию можно в нем запасти, если зарядить его грозовым напряжением, скажем, в 10 MB?

W = C·U>2/2 = 0,17·10>-6х10·10>6х10·10>6 = 0,17·10>8 Дж = 24 кВт·ч.

Это даже меньше нормального месячного квартирного расхода.

Как видим, запасов небесной электроэнергии не так уж и много, а вот шума и блеска от молнии достаточно. Она за прошедшие двести лет, после работ М.В.Ломоносова, досконально изучена и исследована. Без этого было бы невозможно использовать высоковольтные воздушные ЛЭП, открытые распределительные подстанции, антенны, многие виды связи, высотные здания, воздушный транспорт, ракеты…

Происхождение гроз — следствие электризации. В атмосфере, насыщенной водяными парами, под действием мощных восходящих воздушных потоков происходит разбрызгивание водяных капель. Образующаяся при этом мельчайшая водяная пыль оказывается заряженной отрицательно, а оставшиеся тяжелые капельки — положительно.

Ветер разносит отрицательно заряженную водяную пыль на значительные расстояния, образуя основной массив грозового облака. Таким образом началом грозового явления служит механическое разделение зарядов противоположного знака и сосредоточение в различных частях облака значительных объемов униполярных зарядов. Такое облако, заряженное с нижней стороны в основном отрицательно, и образует рассмотренный конденсатор, другой обкладкой которого является земля, где на поверхности индуктируются положительные заряды. Средняя напряженность такого конденсатора обычно не превышает 10 кВ на метр.

Разряд между облаком и землей начинается с прорастания от облака к земле слабо светящегося канала — ступенчатого лидера, движущегося толчкообразно со средней скоростью около 100 км/с. Когда он достигнет земли, начинается фаза главного разряда — собственно молнии. Амплитуда импульса тока молнии достигает десятков и даже сотен килоампер, однако длительность его невелика — тысячные и реже сотые доли секунды. Суммарный заряд, переносимый молнией, лежит в пределах 20 — 100 кулон. В расчетах исходной величиной является не напряжение — разве к облаку подключишь вольтметр? — а ток молнии, ибо он может быть измерен специальными регистраторами. Методика таких расчетов давно и хорошо отработана. Проектирование грозозащиты — заурядная операция, простейшая тема курсовых заданий студентам.

Тем не менее, в печати, особенно «желтой», появляются описания этого явления, не соответствующие действительности. Например, сообщается: по конструкции громоотвод проще простого — железная палка на крыше жилого дома!

Это совершенно неверно. Таким советом воспользуется лишь тот, кто желает спалить свое жилище и убить его обитателей. В действительности, главной частью молниеотвода (правильное название) является заземляющее устройство, соединяющее «палку» с почвой. Оно выполняется по определенным правилам, систематически проверяется и обслуживается. Интересно отметить, что американец Франклин предполагал, что «громоотвод» отводит электричество из воздуха, чем и предотвращает поражение строения. Защитная роль этих устройств впервые правильно оценена Ломоносовым, указавшим, что молниеотвод принимает на себя разряд молнии. Такое понятие вполне соответствует современной точке зрения.

Неверны и сообщения о напряжениях в миллиарды вольт! Возможность воздуха как изолятора при применяемых ныне напряжениях порядка тысяч киловольт уже на исходе. Максимальное напряжение воздушной действующей ЛЭП переменного тока — 1200 кВ, и дальнейшее его увеличение связано с огромным ростом стоимости. Это требует расщепления проводов фаз на несколько проводников для снижения потерь на корону, увеличения высоты опор, сложности подстанционного оборудования… Уже начинают проектировать безвоздушные линии передач с элегазовой изоляцией — так называют коробчатые или трубчатые магистрали, наполненные высокопрочным газом, обычно шести фтор и стой серой (SF>6). Начинает применяться и вакуумная изоляция, например, вакуумные выключатели (возможно, «ЮТ» расскажет о них в ближайших номерах).

Часто выдают за чудо расщепление дерева электрическим разрядом. Однако это давно известное явление. Ток молнии, протекая по волокнам дерева, приводит к взрывообразному испарению влаги древесины. Иногда из опоры ЛЭП таким образом вырываются щепы длиной в метр и более.

Механические воздействия вызываются также кулоновым отталкиванием однополярно заряженных предметов. Кратковременное воздействие разряда, особенно высокочастотного, может оказаться безопасным для человека, но отбросить его рубашку или шапку довольно далеко. На таких эффектах основано немало цирковых трюков, которые, понятно, никакого отношения к теории не имеют, как это считают некоторые авторы.


Еще от автора Журнал «Юный техник»
Юный техник, 2003 № 07

Популярный детский и юношеский журнал.


Юный техник, 2000 № 09

Популярный детский и юношеский журнал.


Юный техник, 2010 № 08

Популярный детский и юношеский журнал.


Юный техник, 2003 № 02

Популярный детский и юношеский журнал.


Юный техник, 2005 № 04

Популярный детский и юношеский журнал.


Юный техник, 2010 № 01

Популярный детский и юношеский журнал.


Рекомендуем почитать
Юный техник, 2014 № 09

Популярный детский и юношеский журнал.


Юный техник, 2014 № 07

Популярный детский и юношеский журнал.


Юный техник, 2014 № 06

Популярный детский и юношеский журнал.


Наука и техника, 2007 № 02 (9)

«Наука и техника» — ежемесячный научно-популярный иллюстрированный журнал широкого профиля.Официальный сайт http://naukatehnika.com.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.