Я — математик. Дальнейшая жизнь вундеркинда - [15]

Шрифт
Интервал

По многим причинам решение провести конгресс в Страсбурге оказалось неудачным. Потом я даже жалел, что своим присутствием как бы выразил согласие с этим решением. Немцев в виде наказания лишили права участия в конгрессе. В зрелые годы я пришел к выводу, что подобные меры недопустимы в практике международных научных отношений. Возможно, что в противном случае конгресс еще очень долго не мог бы состояться, но, может быть, лучше было согласиться на отсрочку, чем допустить проникновение националистического духа в такое действительно интернациональное учреждение, как международный съезд ученых. В свое оправдание я могу сказать немного: я был молод и занимал такое незначительное положение, что не чувствовал личной ответственности за направление развития мировой науки. Мне представлялся прекрасный случай поехать в Европу не туристом, а ученым — очень скромным, но все-таки ученым, — у кого бы на моем месте хватило духа отказаться?

Конгресс должен был состояться в сентябре, и мне хотелось до этого поработать с кем-нибудь из европейских математиков, интересующихся теми же вопросами, что и я. По некотором размышлении я остановил свой выбор на Морисе Фреше. Фреше яснее других понимал, какие возможности открывает математика кривых по сравнению с математикой точек (я говорил об этом в предыдущей главе), и в то время все были уверены, что его работы станут важным этапом на пути создания новой математической науки.

Надо сказать, что в настоящее время полученные Фреше результаты, при всей своей значительности, занимают в математике все-таки совсем не то место, которое им когда-то прочили. В какой-то степени это связано с тем, что его работы проникнуты духом абстрактного формализма, глубоко враждебным любым конкретным физическим применениям. Но в то время в Страсбурге — оценить прошлое всегда легче, чем предсказать будущее, — большинство считало, что Фреше безусловно станет вождем математиков своего поколения.

Лично меня в работе Фреше привлекало главным образом то, что по своей внутренней направленности она очень близко примыкала к тому, чем я пытался заниматься в Колумбийском университете в период увлечения топологией. Занятия под руководством Рассела и последующее знакомство с работами Уайтхеда пробудили во мне интерес к использованию в математике аппарата формальной логики. А в работе Фреше многие части так и напрашивались, чтобы их изложили на том странном и в высшей степени оригинальном математико-логическом языке, который Уайтхед и Рассел изобрели для своей работы «Принципы математики» (Principia Mathematical[25].

Собственно, теперь я мог бы уже приступить к описанию конгресса, но, прежде чем рассказывать о событиях, происходивших в Страсбурге летом 1920 года, мне хотелось бы остановиться на смысле терминов «постулационизм» и «конструкционализм». Достоинства и недостатки этих двух школ до сих пор являются предметом многочисленных споров в математике. Не мудрено, что в Страсбурге эта проблема доставила мне множество волнений.

Греческая геометрия исходит из некоторых основных предположений, называемых аксиомами или постулатами; эти предположения рассматриваются как простейшие бесспорные законы логики и геометрии. Некоторые из них имеют в основном формально-логический характер, вроде аксиомы о том, что две величины, равные одной и той же третьей величине, должны быть равны между собой. Другие описывают пространственные отношения, как, например, аксиома параллельности, утверждающая, что через каждую точку Р плоскости, не лежащую на заданной в той же плоскости прямой l, проходит одна и только одна прямая, не пересекающая l, которая и будет параллельна l.

Этот последний постулат не обладает самоочевидностью чисто логических постулатов математики. Целые поколения ученых всячески пытались доказать, что он не может нарушаться. В XVIII столетии итальянский математик Саккери потратил много усилий на исследование различных следствий, получающихся при отказе от аксиомы о параллельности, в надежде, что при этом он рано или поздно придет к какому-либо логическому противоречию. Саккери проделал интереснейшую работу и нашел множество новых форм аксиомы о параллельности, но все его усилия оказались тщетными. Чем более он старался найти противоречия среди следствий из отказа от этой аксиомы, тем более содержательной становилась совокупность фактов, получающаяся при таком отказе. Эта все возрастающая совокупность фактов постепенно приобретала характер геометрии, страшно причудливой по сравнению с обычной геометрией Евклида, но тем не менее внутренне нисколько не противоречивой.

Наконец, в начале XIX столетия целая группа ученых — венгерский математик Янош Больяй, русский математик Лобачевский и великий немецкий математик Гаусс — пришла к смелому заключению о том, что отказ от аксиомы о параллельности вообще не приводит ни к какому противоречию, а означает только переход к новой, неевклидовой геометрии. Начиная с этого времени, все более и более росло понимание того, что так называемые постулаты геометрии, а также постулаты других математических дисциплин вовсе не являются непререкаемыми истинами. К ним начали относиться как к предположениям, которые можно принять или отвергнуть в зависимости от особенностей изучаемой математической системы.


Еще от автора Норберт Винер
Искуситель

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кибернетика и психопатология

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Наука и общество

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Кибернетика, или Управление и связь в животном и машине

«Кибернетика» — известная книга выдающегося американского математика Норберта Винера (1894—1964), сыгравшая большую роль в развитии современной науки и давшая имя одному из важнейших ее направлений. Настоящее русское издание является полным переводом второго американского издания, вышедшего в 1961 г. и содержащего важные дополнения к первому изданию 1948 г. Читатель также найдет в приложениях переводы некоторых статей и интервью Винера, включая последнее, данное им незадолго до смерти для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт».Книга, написанная своеобразным свободным стилем, затрагивает широкий круг проблем современной науки, от сферы наук технических до сферы наук социальных и гуманитарных.


Голова

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Творец и робот

«Творец и робот» – последняя книга основоположника кибернетики Норберта Винера, увидевшая свет в 1964 году, вскоре после смерти автора. Она создана на материале популярных лекций и представляет собой небольшой цикл социально-философских очерков, объединенных одной внутренней темой. Тема эта – в широком смысле – соотношение между творцом и его творением, между творческими силами человека и созданной его гением кибернетической машиной.


Рекомендуем почитать
Горький-политик

В последние годы почти все публикации, посвященные Максиму Горькому, касаются политических аспектов его биографии. Некоторые решения, принятые писателем в последние годы его жизни: поддержка сталинской культурной политики или оправдание лагерей, которые он считал местом исправления для преступников, – радикальным образом повлияли на оценку его творчества. Для того чтобы понять причины неоднозначных решений, принятых писателем в конце жизни, необходимо еще раз рассмотреть его политическую биографию – от первых революционных кружков и участия в революции 1905 года до создания Каприйской школы.


Школа штурмующих небо

Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.


Небо вокруг меня

Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.


На пути к звездам

Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.


Вацлав Гавел. Жизнь в истории

Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.


Счастливая ты, Таня!

Автору этих воспоминаний пришлось многое пережить — ее отца, заместителя наркома пищевой промышленности, расстреляли в 1938-м, мать сослали, братья погибли на фронте… В 1978 году она встретилась с писателем Анатолием Рыбаковым. В книге рассказывается о том, как они вместе работали над его романами, как в течение 21 года издательства не решались опубликовать его «Детей Арбата», как приняли потом эту книгу во всем мире.