Вселенная погибнет от холода. Больцман. Термодинамика и энтропия - [14]

Шрифт
Интервал


ГАУССОВА КРИВАЯ

Гауссова кривая — центральный элемент теории вероятностей. Можно математически доказать, что в среднем множество независимых случайных переменных будет распределяться по этой модели. Ее применение видно на примере экспериментальной физики: когда измеряется некоторая величина, обычно получают несколько результатов, которые колеблются вокруг среднего значения, но, как правило, они неодинаковые из-за того, что называют случайной ошибкой. Слово "ошибка" означает не то, что эксперимент провалился, а что при измерении на него может повлиять большое число неуточненных (поэтому и "случайная") причин. Итак, если взять достаточное число измерений, они будут распределяться в виде гауссовой кривой вокруг среднего значения. Это мощный инструмент статистического анализа данных, поскольку к гауссову распределению очень легко подойти математически, не прибегая к числовым методам, требующим компьютерных вычислений. В целом принято считать, что любые экспериментальные данные, будь то область физики, химии или общественные науки, ведут себя согласно гауссову, или "нормальному", распределению.


СТАТЬЯ 1868 ГОДА — ПРЕДШЕСТВЕННИЦА Н-ТЕОРЕМЫ

В 1868 году Больцман получил право на преподавание, что позволяло ему читать лекции в университете. В том же году он опубликовал новую статью по кинетической теории под названием " Исследования о равновесии энергии между подвижными материальными точками". В ней он исходил из распределения Максвелла и обобщал его применительно к системам, в которых молекулы подвержены действию произвольной силы. Статья 1868 года стала большим шагом вперед в развитии интерпретации термодинамики, основанной на кинетической теории: Больцман привел более мощное обоснование применения гауссова распределения к описанию газа и показал, что оно должно использоваться для чрезвычайно общего множества случаев, а также расширил работу Максвелла и включил в исследование газы, подверженные действию различных сил.

Вторая часть статьи была перспективной, в ней он оставил стратегию 1866 года и принялся за другую, абсолютно отличающуюся, заинтересовавшись глобальным состоянием системы, а не отдельными скоростями молекул. В его новом подходе был использован математический объект, который физики называют "фазовым пространством". Речь идет об абстрактной сущности, в которую включается информация о положениях и импульсах (которые получаются умножением массы на скорость) всех частиц системы. Каждое положение задано тремя числами, или компонентами: по одному для каждой из пространственных осей. То же самое с импульсами, поскольку скорости могут быть направлены в любую сторону. Если газ состоит из N частиц, то точка в фазовом пространстве задана 6N числами, поскольку с каждой молекулой связано три числа для ее положения и три числа для ее импульса, всего шесть. Конфигурацию системы тогда можно уточнить, выбрав точку в фазовом пространстве; ее эволюция рассматривается как траектория, которую она описывает в этом пространстве, двигаясь от одной конфигурации к ближайшей.

Больцман воспользовался этой идеей, чтобы доказать: любой изолированный газ рано или поздно достигает гауссова распределения (в чем потерпел поражение Максвелл), и после его достижения других изменений больше не происходит. Он показал, что если энергия системы постоянна, постоянно и распределение вероятностей, и что при большом числе частиц это распределение окажется распределением Максвелла.

Он не только смог воспроизвести результат своего предшественника, но и предоставил гораздо более строгое и общее обоснование. Кроме того, он наметил контуры своей последующей статьи 1877 года, в которой полностью принял метод рассмотрения газа, положив начало статистической физике.


ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА И РАЦИОНАЛЬНЫЕ ЧИСЛА

Действительные числа состоят из суммы множеств рациональных и иррациональных чисел. Первые числа — те, что можно выразить в виде частного между двумя целыми числами; вторые нельзя выразить таким образом. Примеры рациональных чисел — 2,5/7 или 2,35; а π, е или √2 — иррациональные числа. Иррациональные числа в бесконечное число раз изобильнее, чем рациональные. В самом деле между двумя любыми действительными числами существует бесконечное число иррациональных чисел. Чтобы убедиться в этом свойстве, достаточно сосредоточиться на их десятичном выражении. Возьмем два очень близких числа, таких как 1,00000000250 и 1,00000000251. Если добавить произвольный набор нулей и единиц после 5, получается бесконечное число сочетаний (поскольку существует бесконечное число знаков после запятой) чисел, имеющих значение между двумя предыдущими. Какой бы маленькой ни была разница, их всегда будет бесконечное число, поскольку бесконечность минус конечное число остается бесконечностью. При заданном конечном времени невозможно, чтобы молекула прошла через все возможные состояния энергии, если она способна принимать любые действительные значения. Единственное, в чем можно быть уверенными, — траектории будут "плотными", и с математической точки зрения это означает, что они будут проходить произвольно близко к любому числу.


Еще от автора Эдуардо Арройо
Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.