Вселенная Алана Тьюринга - [35]
И самое главное – Алану удалось доказать, что математика никогда не будет исчерпана никаким конечным множеством операций.
Дальше он выразил наиболее важную идею для своего исследования: «Действия компьютера в любой момент времени строго определены символами, которые он считывает также, как и его «состояние» в текущий момент. Мы можем предположить, что существует некоторый предел B для числа символов или ячеек, которые компьютер может считывать за одну единицу времени. Чтобы считать следующие символы, ему придется сделать шаг к следующей ячейке. Также предположим, что число подобных состояний, которые должны быть приняты во внимание, также конечно. Причины тому по своей природе схожи с теми, что возникают при ограничении количества символов. Если мы допустим бесконечное число состояний, некоторые из них будут «в некоторой степени похожими» и вследствие этого могут быть перепутаны. Следует еще раз подчеркнуть, что подобное ограничение не оказывает серьезного влияния на производимое вычисление, поскольку использования более сложных состояний можно попросту избежать, записав больше символов на рабочую ленту».
Слово «компьютер» здесь использовалось в своем значении, относящемся к 1936 году: лицо, выполняющее вычисления. В другом месте своей работы он обратился к идее, что «человеческая память неизбежно является ограниченным ресурсом», но эту мысль он выразил в ходе своего размышления о природе человеческого разума. Его предположение, на котором основывались его доводы о том, что состояния были исчислимы, было довольно смелым предположением. Особенно примечательно это было тем, что в квантовой механике физические состояния могли быть «в некоторой степени похожими». Далее он продолжил рассуждать о природе вычислений: «Представим, что производимые компьютером операции разложены на «простые операции», настолько элементарные, что невозможно представить дальнейшего их разложения на еще более простые операции. Каждая такая операция несет в себе некоторое изменение в физической системе, которую представляют собой компьютер и его лента. Нам известно состояние системы при условии, что мы знаем последовательность символов на рабочей ленте, которую считывает компьютер (возможно, в особом установленном порядке), а также состояние компьютера. Мы можем предположить, что в ходе простой операции не может быть изменено больше одного символа. Любые другие изменения могут быть разложены на более простые изменения подобного вида. Ситуация относительно ячеек с изменяемыми таким образом символами точно такая же, как и в случае со считанными ячейками. Таким образом, мы можем без ограничения общности предположить, что ячейки с измененными символами равнозначны считанным ячейкам.
Помимо подобных изменений символов простые операции должны включать в себя изменения распределения считанных ячеек. Новые считываемые ячейки должны в тот же момент распознаваться компьютером. Думаю, что разумно будет предположить, что такими могут быть лишь те ячейки, расстояние которых от наиболее близко расположенной к только что мгновенно считанной ячейке не превышает определенное установленное число ячеек. Также предположим, что каждая из новых считанных ячеек находится в пределах L – ячеек последней считанной ячейки.
В связи с «немедленным распознаванием», можно полагать, что существуют другие виды ячеек, которые так же немедленно распознаются компьютером. В частности, отмеченные специальными символами ячейки могут считаться немедленно распознаваемыми компьютером. Теперь, если такие ячейки отмечены одинарными символами, их может быть только конечно количество, и мы не должны разрушать нашу теорию, добавляя отмеченные ячейки к тем, что были считаны. С другой стороны, если они отмечены последовательностью символов, мы не можем рассматривать процесс распознавания в качестве простой операции…»
«Теперь мы можем сконструировать машину, – писал далее Алан, – чтобы выполнить работу этого компьютера». Смысл его рассуждений был очевиден: каждое состояние вычислителя представлялось в виде конфигурации соответствующей машины.
Так, Алан смог разрешить один из ключевых вопросов в математике, с шумом ворвавшись в научный мир будучи еще никому неизвестным молодым ученым. Его решение проблемы касалось не только абстрактной математики или некоторой игры символов, оно также включало в себя рассуждения о природе отношений человека и физического мира. Это нельзя было назвать наукой с точки зрения проводимых наблюдений и предсказаний. Все, что он сделал, – создал новую модель, новую основу. Его методы были сродни той игре воображения, которую использовали Эйнштейн и фон Нейман, ставя под сомнение существующие аксиомы вместо того, чтобы оценивать результаты. Его модель даже не была по-настоящему новой, поскольку раньше уже существовали многие подобные идеи, даже на страницах детской книги «Чудеса природы», представляющие мозг в виде машины, телефонного узла или офисной системы. Ему оставалось лишь объединить такое простое механистичное представление человеческого разума с ясной логикой чистой математики. Его машины – которые в дальнейшем будут называться
О загадочной, «зашифрованной» судьбе великого криптографа снят фильм «Игра в имитацию», который получил главную награду Кинофестиваля в Торонто в 2014 году. В роли Тьюринга — Бенедикт Камбербэтч, прославившийся своей ролью в телесериале «Шерлок». А его несостоявшуюся невесту Джоан Кларк сыграла Кира Найтли.Национальный совет кинокритиков США и Американский институт киноискусства включили «Игру в имитацию» в топ 10 фильмов 2014 года. Также фильм получил пять номинаций на премию «Золотой глобус».Настало время миру узнать о Тьюринге.
Эта книга – увлекательный рассказ о насыщенной, интересной жизни незаурядного человека в сложные времена застоя, катастрофы и возрождения российского государства, о его участии в исторических событиях, в культурной жизни страны, о встречах с известными людьми, о уже забываемых парадоксах быта… Но это не просто книга воспоминаний. В ней и яркие полемические рассуждения ученого по жгучим вопросам нашего бытия: причины социальных потрясений, выбор пути развития России, воспитание личности. Написанная легко, зачастую с иронией, она представляет несомненный интерес для читателей.В формате PDF A4 сохранен издательский макет.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Флора Павловна Ясиновская (Литвинова) родилась 22 июля 1918 года. Физиолог, кандидат биологических наук, многолетний сотрудник электрофизиологической лаборатории Боткинской больницы, а затем Кардиоцентра Академии медицинских наук, автор ряда работ, посвященных физиологии сердца и кровообращения. В начале Великой Отечественной войны Флора Павловна после краткого участия в ополчении была эвакуирована вместе с маленький сыном в Куйбышев, где началась ее дружба с Д.Д. Шостаковичем и его семьей. Дружба с этой семьей продолжается долгие годы. После ареста в 1968 году сына, известного правозащитника Павла Литвинова, за участие в демонстрации против советского вторжения в Чехословакию Флора Павловна включается в правозащитное движение, активно участвует в сборе средств и в организации помощи политзаключенным и их семьям.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.