Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [9]
Между тем равенство масс нейтрона и протона говорило о том, что между этими частицами существует некоторая симметрия[22]. Эта симметрия была установлена Грегори Брейтом и Юджином Финбергом в 1936 г., после того как в том же году Мерл Тьюв с коллегами экспериментально измерили силу протон-протонного взаимодействия и обнаружили, что она равна уже известной к тому времени силе нейтрон-протонного взаимодействия. Найденная симметрия получила название изоспиновой; математикам она известна как SU(2)[23].
Физика частиц возобновила свое развитие после окончания Второй мировой войны. (Здесь я, пожалуй, закончу перечислять имена физиков, работавших в этой области, поскольку это заняло бы слишком много времени, а кроме того, я боюсь пропустить имя кого-нибудь из ныне живущих.) В конце 1940-х гг. старая проблема бесконечностей в квантовой электродинамике была решена с помощью теории перенормировки[24]. Мезон Юкавы, который мы теперь называем пионом, был обнаружен, и были определены свойства частицы, отличающие ее от открытого в 1937 г. мюона, который можно уподобить тяжелому электрону. Частицы, обладающие новым приближенно сохраняющимся квантовым числом — странностью, — были открыты в 1947 г.[25] Все эти новые частицы были обнаружены в космических лучах, но уже в 1950-х гг. на смену космическим лучам как инструменту для поиска новых частиц пришли ускорители. Ускорители становились все масштабнее и мощнее — они уже не помещались в подвалах университетских физических лабораторий и становились огромными объектами, видимыми из космоса.
Выдающийся успех квантовой электродинамики подарил надежду на создание квантовой теории поля, охватывающей все элементарные частицы и их взаимодействия, однако в этом направлении возникли серьезные препятствия. Для начала отметим, что такая теория требует выбрать элементарные частицы, описания полей которых появятся в уравнениях. Однако после открытия столь большого количества новых частиц уже стало невозможно всерьез относится к выбору небольшой группы частиц в качестве элементарных. Кроме того, можно было легко представить любое число теорий сильных взаимодействий в квантовых полях, но что с ними делать? Сильные взаимодействия оказались слишком сильными и не допускали приблизительных расчетов. Одна из теоретических школ и вовсе пришла к отказу от квантовой теории поля, по крайней мере в отношении сильных взаимодействий, и в дальнейшем полагалась исключительно на общие свойства процессов рассеяния.
Другая проблема: что нам делать с приближенными симметриями, вроде изоспиновой, или еще более загадочным спонтанным нарушением симметрии, описывающим свойства низкоэнергетических пионов, или еще более грубой симметрией, которая устанавливает связь между обычными и странными частицами?[26] Оказалось, что даже инвариантность относительно пространственного отражения (так называемая Р-симметрия, или зеркальная симметрия), обращения времени (Т-симметрия) и замена частицы на соответствующую античастицу (С-симметрия, или зарядовое сопряжение) оказалась приближенной. Если симметрии — выражение гармонии природы, то являются ли приближенные симметрии выражением приближенной гармонии природы?
Для слабых взаимодействий у нас имеется квантовая теория поля, которая хорошо согласуется с экспериментом, — теория бета-распада Ферми, появившаяся в 1933 г. Однако при обобщении этой теории за пределы нижнего порядка аппроксимации она привела к появлению бесконечностей, которые, очевидно, нельзя устранить с помощью перенормировки.
Все эти препятствия были преодолены в 1960–1970-х гг. благодаря развитию новой квантово-полевой теории элементарных частиц — Стандартной модели. Она построена на точных локальных симметриях, часть которых подвержена спонтанному нарушению, а другие — нет[27]. БАК, несомненно, позволит нам раскрыть механизм, приводящий к спонтанному нарушению локальной симметрии слабого и электромагнитного взаимодействий. Существует очевидный набор элементарных частиц, поля которых включены в Стандартную модель, — это кварки (из которых состоят протоны, нейтроны и другие сильно взаимодействующие частицы), лептоны (электроны, нейтрино и другие слабо взаимодействующие частицы) и бозоны, возникающие как проявления локальных симметрий (фотоны, переносящие сильное взаимодействие глюоны и переносящие слабое взаимодействие при бета-распаде W- и Z-бозоны). Нам все еще крайне сложно выполнять точные расчеты для сильно взаимодействующих частиц, например протонов и нейтронов, состоящих из кварков, но ослабление сильного взаимодействия при высоких энергиях позволяет произвести достаточный объем вычислений, чтобы убедиться в правильности теории.
Простота Стандартной модели обеспечивается условием перенормировки — в уравнениях допускаются только такие комбинации полей и их производных, размерность которых (в системе единиц, в которой постоянная Планка и скорость света равны единице) не превышает четвертой степени массы[28]. Это условие необходимо для того, чтобы все бесконечности, возникающие в теории возмущений, можно было устранить переопределением конечного набора констант в уравнениях.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.