Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [8]

Шрифт
Интервал

Что еще важнее, наблюдение рассеяния альфа-частиц на большие углы убедило Резерфорда, что основная часть массы и положительный электрический заряд сконцентрированы в малом объеме ядра атома. Раньше считалось, что атом представляет собой нечто вроде пудинга, в котором электроны распределены, как изюм среди равномерно размазанного положительного заряда. Открытие ядра стало первым в серии важных открытий, сделанных Нильсом Бором (который приезжал в Манчестер), Луи де Бройлем, Эрвином Шрёдингером и Вернером Гейзенбергом, которые и привели к созданию современной квантовой механики.

После этого бурного старта на пути квантовой механики образовалось два явных и существенных для развития фундаментальной физики препятствия. Одно из них связано с распространением принципов квантовой механики на частицы, скорость которых близка к скорости света, а значит, частицы должны подчиняться специальной теории относительности Эйнштейна (СТО). Поль Дирак обобщил волновое уравнение Шрёдингера и получил релятивистское волновое уравнение[12]. Тогда казалось, что предсказание существования дробного спина 1/2 у элементарных частиц — это огромная победа, однако теперь мы знаем, что это был скорее провал, чем успех[13]. Существуют частицы с целочисленным спином 1, например W- и Z-бозоны, которые являются такими же элементарными частицами, как электрон, и многие ученые считают, что на БАК будет открыта такая же элементарная частица с нулевым спином[14]. Кроме того, уравнение Дирака было крайне затруднительно приложить к системам, состоящим из более чем одного электрона. Будущее оказалось за квантовой теорией поля[15], созданной в результате совместной работы разных групп ученых, например команды Макса Борна, Гейзенберга и Паскуаля Йордана в 1926 г., Гейзенберга и Вольфганга Паули в 1926 г. и Паули и Виктора Вайскопфа в 1934 г. (Вайскопф как-то рассказал мне, что в одной из своих поздних статей Паули собирался показать ошибочность теории Дирака о необходимости дробного спина 1/2 и построить удобную и разумную теорию частиц с нулевым спином.) Квантовая теория поля впервые была применена Ферми в 1933 г. в его теории бета-распада, а затем стала математической основой для большей части успешных теорий элементарных частиц[16].

Второе очевидное препятствие было связано с атомным ядром. Высокий кулоновский барьер не позволял альфа-частицам, источником которых в лаборатории Резерфорда служил радий, проникать в атомное ядро[17]. Для решения именно этой проблемы началось развитие ускорителей частиц.

Прогресс в этих направлениях в 1930-е гг. был затруднен из-за странного нежелания теоретиков предлагать новые частицы. Вот три примера.

Во-первых, гладкое распределение электронов, испущенных в результате бета-распада, по энергиям, которое было обнаружено Джеймсом Чедвиком в 1914 г., противоречило предположению о том, что каждый электрон уносит всю энергию перехода ядра из одного состояния в другое, поскольку в этом случае у всех электронов была бы одна и та же энергия, равная разности энергий начального и конечного состояний ядра. Открытие Чедвика было настолько загадочным, что Бор даже допускал нарушение закона сохранения энергии при таком распаде. Высказанное в 1930 г. предложение Паули о введении нового типа частиц — нейтрино — большей частью ученых было встречено скептически, и этот скепсис окончательно исчез только после того, как четверть века спустя нейтрино были обнаружены в экспериментах[18].

Во-вторых, Дирак поначалу предполагал, что «дырки» в электронном «море», соответствующие состояниям электронов с отрицательной энергией в его теории, — это протоны, единственные известные тогда частицы с положительным электрическим зарядом, несмотря на то что такое предположение противоречило бы наблюдаемому факту стабильности каких-либо атомов, так как электроны в атомах могли бы проваливаться в эти «дырки». Позже Дирак отказался от такой трактовки, однако открытие позитронов в космических лучах Карлом Андерсоном и Патриком Блэкеттом в 1932 г. стало неожиданностью для большинства физиков, в том числе и для самих Андерсона и Блэкетта[19].

В-третьих, чтобы придать атомным ядрам соответствующие массы и заряды, физики сначала предположили, что ядра состоят из протонов и электронов. При этом они понимали, что вследствие этого допущения ядро азота-14 становится фермионом, тогда как исследования молекулярного спектра уже показали, что ядро азота-14 — бозон[20]. Окончательно нейтроны признали только после их открытия Чедвиком в 1932 г.

Сегодня это былое нежелание предлагать новые частицы даже в тех случаях, когда существовала очевидная теоретическая необходимость, кажется довольно странной. Современный физик-теоретик вряд ли добьется признания, если не введет хотя бы одну новую частицу, существование которой не подтверждено экспериментально. А в 1935 г. Хидэки Юкава потребовалась большая смелость, чтобы предположить, основываясь на приобретенном к тому времени знании о расстояниях ядерного взаимодействия, существование бозона с массой порядка 100 МэВ[21], которым обмениваются взаимодействующие протоны и нейтроны.


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Объясняя мир. Истоки современной науки

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Фактологичность

Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.


Кто мы и как сюда попали

Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.


Расстроенная психика. Что рассказывает о нас необычный мозг

Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.


Уравнение Бога. В поисках теории всего

«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.