Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [62]
Я помню, что некоторое время назад перед зданием банка на Конгресс-авеню в Остине появилась некая скульптура. Она была сделана из чугунных пластин, установленных под разными углами. Вероятно, из-за своего черного цвета и несколько грозного вида она получила название «Мистический ворон». Скульптура не понравилась никому из опрошенных мною друзей. Позже я случайно оказался на обеде с руководителем того самого банка, который спонсировал установку этой скульптуры. Я спросил его, нравится ли ему «Мистический ворон». Он ответил, что нет, он не понимает такое искусство, но считает, что для его банка важно поддерживать художественные инновации. В конце концов «Мистического ворона» убрали. Возможно, это было сделано для безопасности пешеходов, но я ни разу не слышал, чтобы кто-то о нем сожалел.
Никто не хочет сдерживать инновации, но поддерживать искусство только потому, что оно новаторское, просто глупо, особенно когда искусство может получить силу и ориентиры из своего прошлого. Я полагаю, мой друг банкир разделяет общее убеждение в том, что великое искусство никогда не ценилось по достоинству в свое время. Однако этому утверждению есть множество контрпримеров. Когда Дуччо закончил свою «Маэсту», граждане Сиены устроили праздник и принесли Дуччо на этот праздник на руках. Многие великие композиторы, среди которых Бетховен, Брамс, Верди, Вагнер и Пуччини, были невероятно популярны при жизни, а Шекспир неплохо зарабатывал на своих пьесах. Допускаю, что имеются также и примеры произведений искусства, которые вначале не были оценены по достоинству. В музыке, например, на память приходят поздние произведения Бетховена и «Весна священная»[127] — но общество быстро оценило и их. Несмотря на то что парижская публика гневно встретила премьеру «Весны священной», второе исполнение аудитория восприняла с энтузиазмом. Были слушатели, которые ненавидели Брамса или Вагнера, но в основном их обожали. Не могу представить, чтобы священники и принцы, финансировавшие великое искусство Ренессанса, платили бы, не понимая это искусство, только потому, что им казалось важным оказывать поддержку художественным инновациям.
Иногда, если крайне новаторское произведение искусства не понятно поначалу, стоит относится к нему благожелательно, пока смысл не станет ясен. У меня был подобный опыт. Помню, что, когда я учился в старших классах, я услышал по радио партиту Баха для скрипки соло, и это не произвело на меня впечатления, но я знал, что Бах считается великим композитором, поэтому продолжил слушать его музыку, и со временем она начала мне нравиться. Я пока не могу оценить произведения Штокхаузена или Мессиана, но исполнители, чей музыкальный вкус развит гораздо лучше моего, восхищаются ими, поэтому я готов предположить, что все дело во мне, а не в Штокхаузене или Мессиане. При этом я с большим скепсисом отношусь к достоинствам новаторских произведений, если чувствую, что ими восторгаются только из-за их новаторства. Зачастую нам нечего извлечь из тех произведений искусства, в которых потеряна какая-либо связь с прошлым.
Процитирую последнюю поэму Йейтса «В тени Бен-Балбена», в которой он предостерегает своих коллег:
Даже поборник абстрактного экспрессионизма Клемент Гринберг заявлял, что, «если неизобразительное или абстрактное претендует на эстетическую обоснованность, оно должно быть не произвольным и случайным, а проистекать из подчиненности некоему неоспоримому ограничению или первоисточнику»[129]. Действительно, именно следование традиции зачастую открывает дорогу новаторству. Как говорится, без гармонии диссонанс невозможен.
Есть еще одно, менее очевидное, ограничение, которое накладывается на физические теории. Помимо описания результатов проведенных или будущих экспериментов, теории должны отвечать определенным внутренним ограничениям, гарантирующим невозможность получения абсурдных результатов даже для тех в принципе осуществимых экспериментов, которые никогда не будут выполнены из чисто практических соображений.
Например, хорошие теории не должны описывать эффекты, нарушающие причинно-следственную связь. Для реализации этого принципа необходимо иметь возможность установить такой порядок событий во времени, который не зависит от положения наблюдателя. С этим не было сложностей, пока физика базировалась на концепции времени, представленной в «Началах» Ньютона: «Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно»[130]. Но в СТО Эйнштейна, предложенной в 1905 г., течение времени зависит от движения наблюдателей. Согласно СТО, наблюдатели, движущиеся с разными скоростями, могут даже расходиться в восприятии порядка событий, из-за чего возникает опасность, что для одних наблюдателей причина будет предшествовать следствию, а для других следствие будет предшествовать причине. Однако, поскольку в рамках СТО движение особым образом воздействует на время, нарушение причинно-следственной связи из-за движения наблюдателей может случиться, только если события настолько близки во времени и разнесены в пространстве, что свет не успевает пройти расстояние, отделяющее одно событие от другого. Таким образом, принцип причинно-следственной связи можно сохранить, если добавить к положениям СТО дополнительное требование — скорость передачи любого сигнала не может превышать скорость света. Если временной интервал между двумя событиями настолько мал, а расстояние между ними настолько велико, что движение наблюдателей может повлиять на порядок их совершения, то при указанном условии ни один сигнал не сможет соединить эти два события, поэтому ни одно из них не может быть причиной для другого.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.