Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке - [60]
Ошибки могут быть чрезвычайно поучительными. Они избавляют от высокомерия и самонадеянности, открывают дорогу новым идеям. Веками наш мир страдал от политических и религиозных лидеров, которые вели себя так, будто были уверены в том, что они постигли истину и могли передать эту уверенность своим последователям. И все это продолжается и поныне, в чем можно убедиться, заглянув в любую газету. Поэтому в качестве напутствия выпускникам я хочу пожелать, чтобы вы, ради благополучия всего мира и ради вашего собственного благополучия, стремились признавать свои ошибки, которые неизбежно совершите на своем пути в большом мире, и даже немного гордились тем, что, будучи учеными, инженерами или архитекторами, вы способны понять, что были в чем-то не правы.
24. Ремесло науки и ремесло искусства
Этот публикуемый впервые очерк основан на тексте моего выступления на церемонии вручения премии имени Джеймса Джойса в Литературно-историческом обществе Университетского колледжа в Дублине, которая состоялась 10 февраля 2009 г. Здесь я выступаю с позиций культурного реакционера. В своей автобиографии Генри Адамс[126] определяет себя как человека XVIII в., обреченного прожить большую часть своей жизни в XIX в. с небольшой надеждой на XX в. Я могу про себя сказать то же самое, только, конечно, все даты будут сдвинуты на 100 лет вперед. Когда я рассказал Джеффу Дину из Harvard University Press, что ни один из прочитавших этот очерк не согласился с изложенными здесь мыслями, Джефф ответил, что может понять почему.
Очень приятно получить премию, учрежденную в честь писателя, которым я так восхищаюсь. Вдвойне приятно, что это дает мне смелость поговорить о творческом процессе в литературе и других искусствах с точки зрения физика, предъявляющего достаточно высокие требования к художественному творчеству. Нет, я не питаю иллюзий о том, что научные открытия как-то влияют на искусство. Научные открытия могут служить искусству источником вдохновения или метафорой, но и любые другие вещи тоже могут. Скорее, мне кажется, между методами работы теоретических физиков и людей искусства можно провести некоторые параллели, которые позволят глубже взглянуть на современные проблемы как науки, так и искусства.
На первый взгляд эта тема может показаться малообещающей. Обычно ученого представляют как человека, который надевает белый халат и идет в лабораторию, где он проводит эксперименты, раскрывающие объективные факты о природе. Ученый воспринимается как честный наблюдатель, творческое начало которого проявляется только при проектировании экспериментов и написании заявок на исследовательские гранты. Творческий подход к записи экспериментальных данных не одобряется.
В таком карикатурном образе ученого есть частицы правды. Некоторые сотрудники лабораторий действительно носят белые халаты. Однако работа физика-теоретика совершенно иная. Хорошо это или плохо, но наша повседневная работа больше похожа на работу поэтов, композиторов или художников, чем на труд ученых-экспериментаторов. Мы, теоретики, редко заходим в лаборатории. Наоборот, сидя за своими столами, мы вольны создавать любые теории, какие нам нравятся, с любым разнообразием частиц и сил, так же как поэты или композиторы вольны переносить на бумагу любые понравившиеся им слова или ноты или художники — понравившиеся краски на холст. Большая часть теорий, которые мы выдумываем, не работают, так же, я полагаю, как и большая часть произведений, создаваемых людьми искусства.
Аналогию можно углубить. Свобода, которой обладают теоретики и художники, является также и источником нашего глубочайшего страдания. При бесконечном разнообразии возможных теорий, поэм или картин как нам каждый день удается решать, сидя за рабочим столом, что делать дальше? Как ни парадоксально, огромную помощь теоретической физике оказывают ограничения, которым должны отвечать наши теории, даже несмотря на то что эти ограничения усложняют нам работу. Мне кажется, что нечто подобное существует и в искусстве. Художники вдохновляются теми же самыми ограничениями, которые затрудняют их работу, при этом мы получаем огромное удовольствие от искусства, наблюдая за тем, как художники обходятся с этими ограничениями. Итак, вот моя тема для обсуждения — ограничения, которые должны соблюдать художники и физики-теоретики, как они усложняют наше ремесло и как при этом делают его существование возможным.
Первое ограничение, накладываемое на физические теории, состоит в том, что все они должны согласовываться с результатами наблюдений. Оно может показаться очевидным, однако способ это осуществить не всегда так уж прост. Во-первых, иногда результаты экспериментов ошибочны. Вот классический пример. В 1905–1906 гг. Уолтер Кауфман из Геттингенского университета провел измерение отклонений быстрых электронов в электрическом и магнитном полях. Его данные вроде бы показывали, что СТО Эйнштейна неверна. Вы можете сказать, что этот факт должен был привести к отказу от СТО. Тем не менее, сохраняя впечатляющее самообладание, Эйнштейн предположил, что неверны результаты экспериментов Кауфмана, и, конечно, Эйнштейн не ошибся. Я тоже имел опыт, когда результаты эксперимента, казалось, противоречили теории, над которой я работал, — Стандартной модели элементарных частиц. Эта теория подтверждена множеством экспериментов, проведенных в начале 1970-х гг. Позже, в 1976–1977 гг., оказалось, что несколько независимых экспериментов по распространению поляризованного света в парáх висмута и по формированию мюонных триплетов при высокоэнергетических столкновениях вроде бы противоречат теории. Не обладая самоуверенностью Эйнштейна, я и другие теоретики принялись за работу и начали искать модификации Стандартной модели, которые сохранили бы ее прошлые успехи и соответствовали новым данным. Мы могли бы избавить себя от этой проблемы; через несколько лет выяснилось, что эксперименты с висмутом и мюонными триплетами были просто ошибочными и Стандартная модель не нуждается в модификации.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.