Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [243]

Шрифт
Интервал



Пора, кстати, раскрыть карты:

 – это электрон, наша прекрасная стабильная частица, основа химии и разнообразного другого благополучия;
 – его более тяжелый двойник мюон, пригодившийся нам на одной из прогулок для тестирования замедления времени; их третий собрат
называется тау-лептоном, или тауоном, или (пожалуй, чаще) просто тау. Электрический заряд каждого из них равен минус единице. В составе мира на постоянной основе присутствует единственный стабильный представитель этой троицы, электрон[314]. Его античастица
 – позитрон – сама по себе тоже стабильна, но, как только в сдаче оказывается позитрон, он быстро находит себе один из многочисленных электронов по соседству и немедленно с ним аннигилирует.

Три карты с нулями – это нейтрино, а три с нулями с чертой – антинейтрино. Это легкие частицы, которые носятся по Вселенной, практически ни в чем не участвуя. Точнее говоря, они совсем не участвуют в создании структур, а кроме того, чрезвычайно слабо взаимодействуют со всеми другими элементарными частицами. Нуль указывает на их электрический заряд: он отсутствует, из-за чего нейтрино невосприимчивы к электромагнитному взаимодействию; невосприимчивы они и к сильному ядерному взаимодействию, и их единственный контакт с миром, кроме гравитации, – слабое ядерное взаимодействие. С точки зрения отношений внутри своей семьи нейтрино стоят особняком от остальных карт: более темные не испытывают необходимости исчезнуть, навсегда превратившись во что-то светлое. Вместо этого нейтрино разных мастей запутаны друг с другом, что выражается в так называемых «осцилляциях» – самопроизвольном последовательном превращении между всеми тремя мастями. Если не вдаваться в более технические подробности, то можно считать, что, получив на руки карту со светлым нейтрино, вы через некоторое время обнаружите, что она превратилась в карту с серым или темным нейтрино, и такие превращения «по кругу» идут безостановочно, на деле являясь для нейтрино способом существования.

Карты двух оставшихся значений 2/3 и –1/3 – это кварки, и это отдельная история. В светлой масти это u (или up) кварк

и d (или down) кварк
Они входят в состав протона и нейтрона, а потому сидят во всех атомных ядрах, т. е. везде вокруг нас, да и внутри нас. Если вы желаете предъявить протон или нейтрон, то вам необходимо собрать вполне определенные комбинации, причем только в одной, светлой, масти:



Кварки двух других мастей – более массивные варианты двух светлых, и, будучи более массивными, они долго не живут. Собственно говоря, и из двух светлых по-настоящему стабилен только один, потому что второй обладает средним временем жизни около 900 с, превращаясь как

(заряд справа и слева, как видим, один и тот же). В правой части – u-кварк, электрон и электронное антинейтрино, что общепринятым образом выражается как d
u + e + v>e. Это превращение не происходит, когда карты составляют «правильную комбинацию», а именно протон; в нейтроне, предоставленном самому себе, оно все-таки случается, из-за чего нейтрон превращается в протон, но внутри атомных ядер нейтроны такого в основном не делают, благодаря чему и существуют стабильные ядра[315]. Рекордсмен по скоротечности жизни – так называемый t (top) кварк
он распадается в среднем через невыразимо короткие 5 × 10>–25 с (за это время свет пролетает расстояние в полторы десятитысячные размера атомного ядра).

Возвращаясь к протонам и нейтронам, из которых собраны все атомные ядра, полезно сложить значения карт в каждой из приведенных выше комбинаций: получаем электрический заряд протона 2/3 + 2/3 – 1/3 = 1 и нейтрона 2/3 – 1/3 – 1/3 = 0. Очень общее правило состоит в том, что запрещено показывать карты с дробным значением заряда: в природе кварки не присутствуют поодиночке, отдельный кварк нельзя «вынуть» из протона, нейтрона или другой частицы, в состав которой он входит; кварки присутствуют в мире лишь в комбинациях, удовлетворяющих нескольким условиям, среди которых важное (хотя и не единственное) – целочисленный (а не дробный) заряд. Целочисленные заряды можно собирать и другими способами: например, комбинация

(где использованы карта и антикарта!) имеет заряд +1 и представляет собой положительно заряженный пи-мезон, а противоположная ей комбинация
дает его античастицу с зарядом –1. Эти частицы играют роль передатчиков ядерного взаимодействия между протонами и нейтронами, но сами по себе они нестабильны. Пи-мезон с зарядом +1 живет в среднем 26 миллиардных долей секунды, после чего превращается главным образом в антимюон и мюонное нейтрино.

Тот факт, что протон и нейтрон нельзя разделить на кварки, выглядит необычно в сравнении со свойствами обычных предметов: все, состоящее из нескольких деталей, можно разобрать на эти детали (или разломать на какие-то другие части), стоит только должным образом потратить энергию, превосходящую энергию связи этих деталей. Поэтому кажется, что все привычные вещи можно в принципе разложить на части – «разобрать на атомы» в качестве программы-максимум. Это верно, причем можно разобрать и сами атомы, и даже их ядра. Но почему же с протонами и нейтронами это не так? Почему в природе не наблюдаются третьи доли от заряда протона? Попробуем вырвать один кварк из протона – скажем, отбирая на ускорителе те случаи, когда при столкновении двух протонов «особенно сильно достается» одному из кварков: он получает столько энергии, что, казалось бы, может вылететь прочь из протона. Но по мере увеличения расстояния между кварками сила притяжения между ними возрастает, а вместе с ней растет энергия их связи, достигая величины 2


Рекомендуем почитать
Взламывая анатомию

Наше тело — удивительная и сложная машина, все части которой работают слаженно, взаимодействуют с окружающей средой и даже учатся у нее.Эта книга подробно рассказывает об устройстве и работе тела, помогая понять, как развивались наши знания о нем. Она дает представление обо всех системах организма, объясняет медицинскую терминологию и отвечает на важнейшие вопросы. Дочитав до конца, вы заглянете не только в прошлое, настоящее и будущее, но и внутрь себя.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Блики на портрете

Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.