Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [243]

Шрифт
Интервал



Пора, кстати, раскрыть карты:

 – это электрон, наша прекрасная стабильная частица, основа химии и разнообразного другого благополучия;
 – его более тяжелый двойник мюон, пригодившийся нам на одной из прогулок для тестирования замедления времени; их третий собрат
называется тау-лептоном, или тауоном, или (пожалуй, чаще) просто тау. Электрический заряд каждого из них равен минус единице. В составе мира на постоянной основе присутствует единственный стабильный представитель этой троицы, электрон[314]. Его античастица
 – позитрон – сама по себе тоже стабильна, но, как только в сдаче оказывается позитрон, он быстро находит себе один из многочисленных электронов по соседству и немедленно с ним аннигилирует.

Три карты с нулями – это нейтрино, а три с нулями с чертой – антинейтрино. Это легкие частицы, которые носятся по Вселенной, практически ни в чем не участвуя. Точнее говоря, они совсем не участвуют в создании структур, а кроме того, чрезвычайно слабо взаимодействуют со всеми другими элементарными частицами. Нуль указывает на их электрический заряд: он отсутствует, из-за чего нейтрино невосприимчивы к электромагнитному взаимодействию; невосприимчивы они и к сильному ядерному взаимодействию, и их единственный контакт с миром, кроме гравитации, – слабое ядерное взаимодействие. С точки зрения отношений внутри своей семьи нейтрино стоят особняком от остальных карт: более темные не испытывают необходимости исчезнуть, навсегда превратившись во что-то светлое. Вместо этого нейтрино разных мастей запутаны друг с другом, что выражается в так называемых «осцилляциях» – самопроизвольном последовательном превращении между всеми тремя мастями. Если не вдаваться в более технические подробности, то можно считать, что, получив на руки карту со светлым нейтрино, вы через некоторое время обнаружите, что она превратилась в карту с серым или темным нейтрино, и такие превращения «по кругу» идут безостановочно, на деле являясь для нейтрино способом существования.

Карты двух оставшихся значений 2/3 и –1/3 – это кварки, и это отдельная история. В светлой масти это u (или up) кварк

и d (или down) кварк
Они входят в состав протона и нейтрона, а потому сидят во всех атомных ядрах, т. е. везде вокруг нас, да и внутри нас. Если вы желаете предъявить протон или нейтрон, то вам необходимо собрать вполне определенные комбинации, причем только в одной, светлой, масти:



Кварки двух других мастей – более массивные варианты двух светлых, и, будучи более массивными, они долго не живут. Собственно говоря, и из двух светлых по-настоящему стабилен только один, потому что второй обладает средним временем жизни около 900 с, превращаясь как

(заряд справа и слева, как видим, один и тот же). В правой части – u-кварк, электрон и электронное антинейтрино, что общепринятым образом выражается как d
u + e + v>e. Это превращение не происходит, когда карты составляют «правильную комбинацию», а именно протон; в нейтроне, предоставленном самому себе, оно все-таки случается, из-за чего нейтрон превращается в протон, но внутри атомных ядер нейтроны такого в основном не делают, благодаря чему и существуют стабильные ядра[315]. Рекордсмен по скоротечности жизни – так называемый t (top) кварк
он распадается в среднем через невыразимо короткие 5 × 10>–25 с (за это время свет пролетает расстояние в полторы десятитысячные размера атомного ядра).

Возвращаясь к протонам и нейтронам, из которых собраны все атомные ядра, полезно сложить значения карт в каждой из приведенных выше комбинаций: получаем электрический заряд протона 2/3 + 2/3 – 1/3 = 1 и нейтрона 2/3 – 1/3 – 1/3 = 0. Очень общее правило состоит в том, что запрещено показывать карты с дробным значением заряда: в природе кварки не присутствуют поодиночке, отдельный кварк нельзя «вынуть» из протона, нейтрона или другой частицы, в состав которой он входит; кварки присутствуют в мире лишь в комбинациях, удовлетворяющих нескольким условиям, среди которых важное (хотя и не единственное) – целочисленный (а не дробный) заряд. Целочисленные заряды можно собирать и другими способами: например, комбинация

(где использованы карта и антикарта!) имеет заряд +1 и представляет собой положительно заряженный пи-мезон, а противоположная ей комбинация
дает его античастицу с зарядом –1. Эти частицы играют роль передатчиков ядерного взаимодействия между протонами и нейтронами, но сами по себе они нестабильны. Пи-мезон с зарядом +1 живет в среднем 26 миллиардных долей секунды, после чего превращается главным образом в антимюон и мюонное нейтрино.

Тот факт, что протон и нейтрон нельзя разделить на кварки, выглядит необычно в сравнении со свойствами обычных предметов: все, состоящее из нескольких деталей, можно разобрать на эти детали (или разломать на какие-то другие части), стоит только должным образом потратить энергию, превосходящую энергию связи этих деталей. Поэтому кажется, что все привычные вещи можно в принципе разложить на части – «разобрать на атомы» в качестве программы-максимум. Это верно, причем можно разобрать и сами атомы, и даже их ядра. Но почему же с протонами и нейтронами это не так? Почему в природе не наблюдаются третьи доли от заряда протона? Попробуем вырвать один кварк из протона – скажем, отбирая на ускорителе те случаи, когда при столкновении двух протонов «особенно сильно достается» одному из кварков: он получает столько энергии, что, казалось бы, может вылететь прочь из протона. Но по мере увеличения расстояния между кварками сила притяжения между ними возрастает, а вместе с ней растет энергия их связи, достигая величины 2


Рекомендуем почитать
Как мы едим. Как противостоять вредной еде и научиться питаться правильно

Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.


Советский воинский долг и религия

Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.


Мир после нас. Как не дать планете погибнуть

Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Малый ледниковый период. Как климат изменил историю, 1300–1850

Представьте, что в Англии растет виноград, а доплыть до Гренландии и даже Америки можно на нехитром драккаре викингов. Несколько веков назад это было реальностью, однако затем в Европе – и в нашей стране в том числе – стало намного холоднее. Людям пришлось учиться выживать в новую эпоху, вошедшую в историю как малый ледниковый период. И, надо сказать, люди весьма преуспели в этом – а тяжелые погодные условия оказались одновременно и злом и благом: они вынуждали изобретать новые технологии, осваивать материки, совершенствовать науку.


Возбуждённые: таинственная история эндокринологии. Властные гормоны, которые контролируют всю нашу жизнь (и даже больше)

Перепады настроения, метаболизм, поведение, сон, иммунная система, половое созревание и секс – это лишь некоторые из вещей, которые контролируются с помощью гормонов. Вооруженный дозой остроумия и любопытства, медицинский журналист Рэнди Хаттер Эпштейн отправляет нас в полное интриг путешествие по необычайно захватывающей истории этих сильнодействующих химикатов – от промозглого подвала девятнадцатого века, заполненного мозгами, до фешенебельной гормональной клиники двадцать первого века в Лос-Анджелесе.