Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [228]

Шрифт
Интервал

Даже не пытайтесь рассуждать, не подобрав каркас

Вообще, если в историях, которые вам позволяет рассказывать данный каркас, на ваш взгляд недостаточно подробностей («А если бы спин был направлен вдоль x?»), есть только один способ их добавить: построить подходящий каркас, где интересующее вас «если» представлено в качестве одного из альтернативных свойств, и проверить, что он дает основательные истории. Тогда вы получите ответы на все интересующие вас вопросы. Если согласованный каркас, включающий предмет вашего интереса, никак не выходит, попробуйте убрать какие-то другие подробности. И никогда не пытайтесь совместить истории из различных каркасов.

После всего сказанного едва ли покажется удивительным, что «мировоззренческий» вопрос о коллапсе волновой функции оказывается вопросом о выборе каркаса. Проблема коллапса, как мы видели, состоит в изменении, которое «в результате измерения» происходит с волновой функцией: она превращается в одно из собственных состояний измерявшейся величины, а именно то, которое отвечает актуально измеренному значению. Разбор ситуации оказывается чепуховым упражнением для ОКТ. «Происходит» – порядочная бессмыслица, неподходящий способ изъясняться, пока не выбран каркас. В данном случае требуется каркас, в котором истории заканчиваются набором возможностей, различающихся и состояниями измерительного прибора, и состояниями измеряемой системы. Чуть выше мы интересовались состояниями прибора, но не состояниями системы (электрона) в финальный момент времени t>2. Теперь же выделим в этот момент времени не две, а четыре альтернативы, различающиеся состояниями и электрона, и прибора:

Но это означает, что если прибор показал «вверх», то и спин электрона «оказался» направленным вверх (и аналогично для «вниз») – как если бы произошел коллапс волновой функции электрона!

Картина аналогична и при более замысловатых вариантах выбора финальных альтернатив, и для любых систем – везде, где в копенгагенской интерпретации применяется правило коллапса, в ОКТ можно построить такой каркас, что отвечающие ему истории получат такие вероятности, как если бы использовалось обычное правило Борна и как если бы волновая функция претерпевала коллапс в результате измерения. Создатели ОКТ говорят поэтому, что их подход – это «Копенгаген», только наконец сформулированный правильным образом; их теория ни с чем не борется, но предлагает логически основательные интерпретации методов вычислений, которыми «и так все пользуются». С точки зрения ОКТ правило Борна и коллапс в традиционной формулировке – это вычислительные средства, упрощающие выкладки. Это не так мало, особенно с учетом громоздкого вычислительного аппарата самой ОКТ, но их ни в коем случае не следует путать с объяснением квантовой механики.

Копенгаген?

Да, но с человеческим лицом

Заодно в рамках «каркас-реализма» устраняется напряжение в связи с нелокальным влиянием электронов в ЭПР-паре друг на друга. Во-первых, в ЭПР-паре есть довольно очевидная нелокальность, выражающаяся в том, что это состояние двух электронов несовместимо с локальным свойством «иметь спин вверх» для, например, первого электрона. Это, конечно, «все всегда знали», но сторонники ОКТ указывают на этот факт с целью подчеркнуть контраст: да, в ЭПР-парах есть своя нелокальность, но – и это во-вторых – нет нелокальных воздействий. Все то, что традиционно обсуждается как нелокальное влияние одного электрона в ЭПР-паре на другой, происходит из-за соединения рассуждений в рамках различных каркасов и тем самым нарушает требование основательности. Состояние ψ = |↑⟩>1 |↓⟩>2 – |↓⟩>1 |↑⟩>2, описывающее ЭПР-пару, нельзя включить в одно разбиение наряду с возможностями, которые могут в принципе встретиться при измерении спинов: |↑⟩>1 |↑⟩>2, |↑⟩>1 |↓⟩>2, |↓⟩>1 |↑⟩>2, |↓⟩>1 |↓⟩>2. Это значит, что для «понимания» происходящего в ЭПР-паре надо нарисовать каркас, включающий ψ в начальный момент времени, четверку состояний (которые все вместе удовлетворяют условиям полноты и взаимоисключительности) в какой-то другой и, возможно, что-то еще в дополнительные моменты в зависимости от того, на какие вопросы мы ищем ответ. Вычисление вероятностей по обобщенному правилу Борна тогда показывает, что в подходящем каркасе, начиная с любого момента после создания ЭПР-пары, каждый из электронов уже обладал тем свойством, которое обнаружилось в измерении, и поэтому никакой необходимости в нелокальном воздействии одного электрона на другой просто нет. «Парадоксальность» же, занимавшая ЭПР и Шрёдингера, проистекает из рассуждения, которое не помещается в один каркас: мы измерили положение частицы 2, и оно оказалось коррелировано с положением частицы 1, а если бы мы измерили количество движения частицы 2, то оно оказалось бы коррелировано с количеством движения частицы 1. Никаких «если бы», пока нет единого каркаса, вмещающего все возможные повороты событий! Кроме того, в ОКТ выдвигается и предположительное (как мне кажется, не вполне законченное) объяснение, почему в квантовой механике нарушаются неравенства Белла: потому что в самом выводе этих неравенств тем или иным образом нарушается правило единого каркаса; по мнению сторонников ОКТ, предпосылки этих неравенств выражают не локальный реализм, а классический реализм, попросту неприменимый к квантовой механике, так что с их точки зрения ничего удивительного в нарушении этих неравенств нет.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.