Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [18]

Шрифт
Интервал

не занимался расчетами полетов космических кораблей к Луне – хотя, кто знает, если бы эта задача была поставлена перед ним королем (как она была поставлена советским руководством перед М. В. Келдышем в конце 1950-х), он мог бы этим загореться и посвящать меньше времени другим своим увлечениям и административным обязанностям (Келдыш между тем был президентом Академии наук СССР).

Точно учесть совместное влияние Земли и Луны непросто

Первой земной вещью, которую удалось отправить на Луну, предварительно проделав все необходимые вычисления (и, само собой, преодолев многие технологические сложности), была «Вторая космическая ракета», как она тогда называлась, – аппарат, задним числом переименованный в «Луну-2». «Первая космическая ракета» (в установившейся позднее терминологии – «Луна-1»), стартовавшая с территории СССР в самом начале 1959 г., промахнулась мимо Луны больше чем на три лунных радиуса из-за слишком поздней команды на выключение разгонного двигателя. Ошибки были учтены, и уже в сентябре «Луна-2» попала в цель. Расстояние от центра Земли до центра Луны – 110 с небольшим лунных диаметров; при этом Луна не стоит на месте, а движется относительно Земли со средней скоростью около 3680 км/ч. И да, притягивает космический аппарат с силой, мало существенной на большей части пути, но все возрастающей по мере приближения к Луне, – тогда как притяжение Земли ослабевает по мере удаления. Корабль/ракету при этом именно запускают, почти как шар в боулинге: траектория в основном задается тем, как сработал двигатель при старте с околоземной орбиты, а далее движение происходит под действием одного только тяготения; хорошо, когда по дороге есть возможность небольшой коррекции. Отправить людей к Луне и благополучно вернуть их обратно удалось ценой напряженных целенаправленных усилий только через девять с лишним лет после полета «Луны-2».

Первые предметы доставлены на Луну в 1959 г.

Первым (после, конечно, «Из пушки на Луну») транспортным средством, на котором люди отправились к Луне, был «Аполлон-8» в конце декабря 1968 г. Задача состояла в том, чтобы туда добраться (преодолев примерно 384 000 км), выйти на орбиту вокруг Луны, а затем, наоборот, уйти с нее и вернуться домой. За словами «выйти» и «уйти», как и «добраться» и «вернуться», стоят концентрированные смыслы и сложные технологические решения. Когда три ступени ракеты «Сатурн V» вывели «Аполлон-8» (вместе с третьей ступенью, которой предстояло еще поработать) на низкую околоземную, почти круговую орбиту, все системы корабля были проверены на предмет дальнейшего путешествия к Луне. Действия, необходимые для перехода на курс к Луне, надлежало выполнить в строго определенном месте траектории, которое на рис. 2.1 обозначено буквами TLI, что означает Trans Lunar Injection («переход на траекторию полета к Луне»). Сама «инъекция» состояла в точно дозированном включении двигателя третьей ступени при строго определенной ориентации корабля.


Рис. 2.1. Схема полета «Аполлона-8» к Луне. Размеры Земли и Луны указаны не в масштабе, соответствующем расстоянию между ними. Расстояние от центра Земли до центра Луны примерно в 30 раз превышает диаметр Земли и в 110 раз – диаметр Луны (а Земля «шире» Луны в 3,7 раза). Большой эллипс в действительности вытянут гораздо сильнее


За некоторое время перед этим из центра управления должна была поступить разрешающая команда. На связи с астронавтами был Майкл Коллинз, который в момент времени T + 002:27:22 (т. е. через 2 часа 27 минут и 22 секунды после старта) произнес: «Отлично, "Аполлон-8", есть готовность к переходу на траекторию к Луне, конец связи» (All right, Apollo 8. You are go for TLI, over). Это довольно техническая, сухая фраза, которую он к тому же многократно тренировался произносить (не ради улучшения своей дикции, а как часть тренировки в центре управления, где систематически моделировались всевозможные неисправности и отрабатывались действия по их диагностике и преодолению). Но она произвела на Коллинза впечатление, сравнимое с впечатлением от его собственного полета к Луне семь месяцев спустя:

И вот наступил серьезный момент. Пока мы вели обратный отсчет до включения двигателя [третьей ступени], чтобы выполнить TLI, безмолвие охватило центр управления. Из-за TLI этот полет отличался от предшествовавших ему шести полетов проекта «Меркурий», десяти «Джемини» и одного «Аполлона», отличался от любого путешествия, когда-либо предпринимавшегося людьми на каком бы то ни было транспортном средстве. Впервые в истории человек собирался ускорить себя до скорости освобождения, разорвать хватку гравитационного поля Земли и, как никто никогда не делал раньше, вылететь накатом в открытый космос. После TLI в Солнечной системе должны были появиться трое людей, которых следовало учитывать отдельно от остальных миллиардов, – трое, находящихся в другом месте, движение которых подчиняется другим правилам и среду обитания которых надо считать отдельной планетой. Они могли оглядывать Землю, а Земля могла глядеть на них, и каждая из сторон видела бы другую впервые. Люди в центре управления все это понимали; но не нашлось никаких специально написанных слов, чтобы выразить этот факт. Вместо них была только тонкая зеленая линия, показывающая, как «Аполлон-8» карабкается вверх, набирает скорость и исчезает, оставляя всех нас, застрявших на этой планете, в благоговении оттого, что мы, человечество, в конце концов получили возможность выбора – улететь или не улететь – и выбрали первое.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.