Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [177]

Шрифт
Интервал

на ветру; то же самое делают крылья самолета в полете; пол, по которому вы ходите, в некоторой степени поддается давлению, а потом возвращается в прежнее состояние (а если не возвращается, то вы, похоже, сильно затянули с ремонтом); в мире малого атомы, соединенные в молекулы, испытывают воздействие соседей, которые вообще-то могли бы эту молекулу разрушить, но в подходящем диапазоне условий молекула себя сохраняет, несмотря на получаемые извне «пинки». Показательный пример колебательных систем – молекулы, образованные из двух атомов[219]. Отличительная черта колебательных систем – энергетическая яма вроде показанных на рис. 10.12: ее края не выполаживаются, как в атоме, а, наоборот, уходят неопределенно высоко вверх. Для молекул и других подобных образований такая картина является идеализацией: в реальности стенки имеют конечную высоту и, скажем, разрушение молекулы можно интерпретировать как преодоление стенок посредством переползания через край. И тем не менее такие идеализированные энергетические ямы находят широчайшее применение при описании природы.


Рис. 10.12. Энергетические ямы, определяющие идеальные колебательные системы. Слева: колебания происходят в одном измерении. Справа: колебания происходят в двух измерениях. Вертикальное направление выражает энергию, а горизонтальные – координаты: вдоль одной прямой слева и на плоскости справа


Нулевые колебания – неустранимое движение

В каждой квантовой системе, определяемой энергетической ямой подобного вида, имеется низший уровень движения вместо покоя. Аналогов в привычном нам описании движения у этого явления нет. Этот неустранимый остаток называется нулевыми колебаниями. В слове «нулевые» можно при желании увидеть легкую насмешку над смыслом, потому что эти колебания несут в себе пусть крохотную, но ненулевую энергию. А вообще, колебательным системам живется почти так же тяжело, как атомам, – по сходным причинам, связанным с конфликтом между ограниченным в пространстве движением и принципом неопределенности. Они тоже существуют только при специальных значениях энергии, из своего собственного списка. Для определенности будем говорить о колебаниях, происходящих вдоль одной прямой (чему отвечает энергетическая яма на рис. 10.12 слева). Если перед вами такая колебательная система, а вы желаете ее «взбодрить», передав ей дополнительную энергию, то принимать она сможет только дискретные порции. Картина даже проще, чем в атоме: состояние под номером один в списке (первые «настоящие» колебания, не считая нулевых) требует энергии, которая превосходит энергию нулевых колебаний на удвоенную энергию этих нулевых колебаний. Следующее (второе в списке) возможное состояние колебательной системы требует еще одну порцию энергии величиной с удвоенную энергию нулевых колебаний, следующее – еще одну и т. д. Все энергии в списке идут с постоянным шагом, интервал между двумя соседними энергиями всегда один и тот же. Величина этого энергетического интервала – свойство каждой колебательной системы, «лично» ее характеризующее. Поделив этот интервал на постоянную Планка, мы получаем величину, которая определяет колебательную систему в классическом (неквантовом) мире, – собственную частоту ее колебаний. Конечно, со связью возможных значений энергии и частоты мы уже встречались на предыдущей прогулке: именно на эту идею (энергия) = h · (частота) и набрел Планк в 1900 г. Это правило, как мы теперь видим, выражает собой глубокую природу вещей: тот факт, что колебательные системы существуют только при дискретных значениях энергии.

Мы, разумеется, радуемся дискретности: молекула, способная совершать колебания, поглощает и излучает свет на строго определенных длинах волн, а это дает способ выявлять наличие определенных молекул на сколь угодно большом удалении от наблюдателя, если только он обзавелся хорошими оптическими инструментами. Дискретные линии в спектрах играют роль «цифровой подписи» и атомов, и молекул, выдавая их присутствие. Правда, дискретность в мире молекул становится малозаметной, когда характерные переданные им энергии велики по сравнению с интервалом между разрешенными значениями энергии – что происходит при «высоких» (точнее, «не сверхнизких») температурах. Квантовые эффекты тогда «пропадают», примерно как отдельные песчинки перестают иметь значение при отгрузке песка в промышленном масштабе, когда песок «течет» как непрерывная среда. Зато при по-настоящему низких температурах квантовые свойства проявляют себя в полной мере, что открывает невиданные ранее возможности измерения тонких эффектов, связанных с квантовой дискретностью[220].

Колебания, которые нельзя совсем остановить, а можно только перевести в некоторый «нулевой» режим (с ненулевой, однако, энергией), не могут выглядеть как колебания шариков на пружинке. Чтобы это подчеркнуть, иногда говорят «квантованные колебания» или «квантовые колебания», но я буду чаще всего говорить просто «колебания», лишь время от времени напоминая, что они не без странностей. За следующим поворотом на этой прогулке они буквально обрушатся на нас, потому что невозможность покоя и квантовое устройство колебаний – явления, проявляющие себя не только для молекул, но и как фундаментальный эффект, лежащий буквально в основании мира. Но чтобы обсуждать его, нам потребуется еще одно рассуждение, которое соединяет принцип неопределенности с Самой знаменитой формулой и буквально открывает бездну.


Рекомендуем почитать
Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении

Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.


Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее

С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.


Неотрицаемое. Наш мир и теория эволюции

Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.