Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [156]
На рубеже XX в. граница понятного мира проходила на 25 порядков выше – на масштабе, выражающем размер атома, и при невозможности «заглянуть внутрь» самая первая подсказка о неожиданном (квантовом!) укладе внутриатомной жизни также появилась не без помощи энтропии. «Энтропийные» соображения помогли угадать закон излучения – первый закон природы, отражающий квантовую природу мира. Чуть выше мы брали его взаймы, а сейчас наконец обсудим связанную с ним интригу по порядку. Закон носит имя своего первооткрывателя – Планка.
Расфасовка света. Мы отступаем от эффектов сверхсильной гравитации и сопутствующих им ужасов в виде 77-значных чисел в несравненно более близкий нам мир молекул и атомов, а заодно в год со знаменательным номером 1900, когда Планк установил первый квантовый закон природы – закон излучения. В максимально грубой формулировке этот закон говорит, каким цветом светится нагретое тело в зависимости от его температуры; а точнее, речь идет о том, как интенсивность излучения распределена по разным длинам волн. Если вам случалось настраивать монитор вашего компьютера, то вы могли обнаружить указание на температуру, скажем, 6000 K – что вообще-то близко к температуре на поверхности Солнца. Как-то раз, высказав подозрение, что внутри монитора таких температур все-таки нет, я получил от консультанта в магазине исчерпывающее пояснение: «Но ведь это абсолютно черное тело» (что это, собственно, такое, мы обсудим чуть позже). Планковский закон излучения «абсолютно черного тела» оказался точкой входа в квантовый мир. Это достижение состоялось благодаря счастливому сочетанию нескольких факторов: предшествовавших теоретических идей, прогресса в экспериментальной науке, настойчивости самого Планка, его удачливости в квалифицированном угадывании, а еще – энтропии.
Сначала Планк собирался решить совсем другую задачу. Еще в 1894-м его заинтересовала возможность строго вывести закон возрастания энтропии, исходя из первопринципов. Возрастание энтропии – синоним необратимости, и в поисках источника необратимости Планк взялся исследовать процессы излучения и поглощения света (электромагнитных волн) веществом. Главное про электромагнитные волны сами по себе было известно к тому времени из вторых-бессмертных-после-законов-Ньютона уравнений, записанных Максвеллом. Они говорят, в частности, что излучение случается тогда, когда электрический заряд меняет характер своего движения – испытывает ускорение. Хотя тела вокруг нас электрически нейтральны, там внутри имеются положительные и отрицательные заряды; сейчас про них известно много подробностей, но и без этих подробностей можно было сделать вывод и о существовании зарядов, и о чем-то вроде их колебательного движения, исходя из одного только факта теплового излучения: все тела излучают электромагнитные волны просто оттого, что имеют некоторую температуру (рис. 9.12). На этом среди прочего основано «инфракрасное видение» во всех его разнообразных вариантах, от приборов ночного видения до существенного компонента систем дистанционного зондирования Земли.
Рис. 9.12. Тепловое излучение
Планка, однако, ждало разочарование: он вскоре понял, что надежды найти источник необратимости в процессах взаимодействия света и вещества тщетны. Но эта неудача в блуждании на ощупь оказалась не концом, а началом истории: свое желание понимать вещи исходя из первопринципов Планк перенес на законы излучения. Каждое нагретое тело излучает волны всех длин, но с разными интенсивностями, и длина волны, на которую приходится пик излучения, зависит от температуры. Строго говоря, при этом обсуждается излучение тела, которое не отражает «ни лучика» из падающего на него света, а только испускает излучение из-за того, что нагрето. Такой источник излучения как раз и называется «черное тело» (или, видимо, для красоты, «абсолютно черное тело»). Этот термин, звучащий как обычное слово, вводит в небольшое заблуждение: черное оно, строго говоря, только при температуре абсолютного нуля (неплохим примером абсолютно черного тела является Солнце). Связь между длиной волны, на которой «черное тело» излучает сильнее всего, и температурой была известна Планку как один из законов Вина – законов излучения, носящих имя их первооткрывателя. В другом законе Вин обобщил экспериментальные факты о свойствах излучении в виде формулы, которая неплохо описывала интенсивность излучения на разных длинах волн. Формула представляла собой «умную» подгонку под данные наблюдений и содержала две постоянные, численные значения которых следовало выбрать на основании экспериментальных данных[191]. Планк спросил себя: из какого знания можно было бы вывести формулу Вина? Наблюдая тепловое излучение, мы вообще-то получаем сигналы о том, что происходит где-то внутри молекул и атомов: из-за беспорядочного движения, которое где-то там происходит, заряды подвергаются беспорядочным ускорениям; они и излучают беспорядочно. Вопрос о том, что в точности представляют собой «состояния» электрических зарядов в веществе, как мы теперь знаем, не мог быть решен ни в конце XIX в., ни в начале следующего столетия; более того, решение требовало как минимум тех знаний, дорогу к которым еще только предстояло проложить Планку. Если бы Планк об этом знал, возможно, ничего бы и не произошло (а в 1890-е гг. Планк вообще не был уверен в реальности атомов и молекул; его сомнения подогревались тем, что, допустив существование молекул, приходилось, как тогда казалось, признать возможность демона Максвелла, который нарушает закон возрастания энтропии, а это Планку крайне не нравилось). Но Планк вооружился энтропией, а сила подходов, вовлекающих энтропию, как раз и состоит в возможности гусарского отношения к деталям. Не обязательно знать тонкости внутреннего устройства, достаточно допустить, что там имеется нечто максимально простое, способное излучать на каждой частоте, а именно множество колебательных систем – зарядов, колеблющихся с разными частотами. Между собой они находятся в состоянии теплового равновесия. Как мы видели, молекулы в газе в состоянии теплового равновесия «расталкивают» друг друга так, что устанавливается вполне определенное распределение молекул по энергиям; здесь же колебательные системы с различными частотами «расталкивают» друг друга путем обмена энергией так, что тоже устанавливается некоторое равновесное распределение по энергиям. О том, каким оно получилось, мы судим по характеру излучения: по тому, какую долю всей излучаемой энергии несут различные частоты
Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.
С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.
Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.
Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.
«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.
Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.