Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - [126]

Шрифт
Интервал

. Управление путешествием заметно усложняется: или им придется использовать маленькие алькубьерровские пузырьки для передачи сигналов внутри своего большого пузыря, или, скорее, всю экзотическую материю потребуется заранее распределить вдоль пути требуемым образом. Для чего сначала надо там побывать, а затем обеспечить надзор за состоянием и сохранностью этого недешевого ресурса.

*****

Пустая кривизна. Эйнштейн представил окончательный, логически безупречный вид своих уравнений (без лямбды, разумеется) 25 ноября 1915 г., а меньше месяца спустя у него в руках уже было их точное решение – пришедшее письмом с Восточного фронта и описывающее, как устроена метрика вокруг притягивающего центра. Без сомнения, радовала возможность точно (а не приближенно, как делал сам Эйнштейн, вычисляя перед тем поворот орбиты Меркурия) решить сложные уравнения. Основная трудность с ними в том, что «кривизна не складывается»: если два тела создают кривизну, то нельзя найти сначала кривизну, создаваемую одним телом, потом другим, а потом их сложить. В теории Ньютона было не так: отдельно посчитанные силы притяжения со стороны Солнца и со стороны Луны просто складывались. У Ньютона, как мы помним, проблемы с точным решением, описывающим движение тел под действием взаимного притяжения, начинались с трех тел; точное решение можно записать только для задачи двух тел. В случае уравнений Эйнштейна точно решается только задача одного тела. Мы просто не знаем, как формулами описать метрику пространства-времени, например, при наличии двух близких друг к другу черных дыр. А вот черная дыра в полном одиночестве – точное решение задачи одного тела – и появилась впервые в письме, полученном Эйнштейном 22 декабря 1915 г. от Карла Шварцшильда.

Незадолго перед тем, в ноябре, во время своего отпуска с фронта Шварцшильд присутствовал на лекции Эйнштейна и затем за пару недель «создал» черную дыру[148]. Впрочем, звучное название «черная дыра» придумал Уилер только полстолетия спустя, а в конце 1910-х и в последующие годы решение Шварцшильда привлекало к себе сдержанное внимание, и не все его свойства были поняты сразу. Прежде всего бросались в глаза особенности приближения к горизонту, как они виделись со стороны далекого внешнего наблюдателя («болельщиков»); понимание, что падающий наблюдатель не обнаружит на горизонте ничего специального – собственно говоря, вообще ничего – и бодро пролетит через него, пришло сильно не сразу. Эйнштейну вообще определенно не нравилась идея черных дыр в качестве астрофизических объектов. Закон природы, выраженный в уравнениях Эйнштейна, и найденное математически проявление этого закона – решение Шварцшильда – опережали наблюдения. Тем не менее неочевидные в исходной формулировке свойства этого решения постепенно прояснялись, включая и тот факт, что у черной дыры есть внутренность, откуда нельзя выбраться, но нет ничего похожего на твердую границу или «стенку». Все, что мы говорили про невращающуюся черную дыру на предыдущей прогулке, относилось к черной дыре Шварцшильда. Вращающуюся черную дыру как другое (и заметно более сложное) точное решение уравнений Эйнштейна много позже, в 1963 г., нашел Керр.

Черная дыра – не тело. Это область в пространстве

Несколько парадоксально при этом, что черные дыры как решения уравнений Эйнштейна – это решения без материи: таблица энергии-движения-сил в правой части состоит из одних нулей: пустота, нет ничего. Мы помним, что кривизна – это 20 компонент, которые в уравнениях Эйнштейна собраны по нескольку вместе в Специальной упаковке 4 × 4; там, значит, различные компоненты должны сокращать друг друга, чтобы в левой части уравнений Эйнштейна получились одни нули, как того требует правая часть. Из-за чего же возникают ненулевые компоненты кривизны? Почему пространство-время оказывается неплоским, хотя материи как будто бы нет? Фокус в том, что решение Шварцшильда – это точное решение уравнений Эйнштейна везде, кроме центра черной дыры, где оно теряет применимость. Эту потерю применимости мы выражаем словом «сингулярность». Математически решение не определено в одной-единственной точке, и соблазнительно думать, что вся масса там и прячется, но строгого смысла этому высказыванию придать нельзя; никакое количество массы не может поместиться в точке. Фактически же мы думаем, что в очень малой окрестности центра сверхбольшая плотность материи и сверхвысокая кривизна стирают грань между материей и пространством-временем: они перестают существовать по отдельности, а превращаются в неизвестную нам форму трудно-даже-сказать-чего[149].

Черная дыра не состоит из атомов или элементарных частиц

Но как вообще определяется масса черной дыры? Ее ведь нельзя взвесить; правда, равным образом нельзя взвесить Юпитер или Солнце: вывод о массе Солнца мы делаем, изучая движение вокруг него, т. е. решая задачу, обратную задаче «зная силы, найти движение». Наблюдая за движением по кеплеровым эллипсам вокруг Солнца, мы определяем силу, необходимую для его поддержания, а далее из закона тяготения Ньютона находим массу центрального тела. Для Солнца или Юпитера, правда, есть в принципе и альтернативный способ: можно задаться вопросом, сколько же в них каких атомов или элементарных частиц и какова поэтому их полная масса. Но наши представления о черных дырах говорят, что там, где элементарные частицы в принципе еще могли бы существовать, пусто. Для массы черной дыры остается только определение через движение пробных тел. Их можно даже запускать вдали от самой черной дыры, где у руля снова сэр Исаак Ньютон: чем дальше от центра, тем решение Шварцшильда лучше описывается ньютоновым законом тяготения. Запуская гайку, мы узнаем, какая же масса должна быть сосредоточена в центре, чтобы гайка двигалась именно так. Эту массу мы и называем массой черной дыры. В случае вращающейся черной дыры похожим образом определяются ее масса и количество вращения – с учетом эффекта вовлечения.


Рекомендуем почитать
Пять литров красного. Что необходимо знать о крови, ее болезнях и лечении

Гематолог-онколог Михаил Фоминых доступным языком рассказывает об анатомии и физиологии крови и кроветворных органов, наиболее часто встречающихся синдромах и заболеваниях системы крови, методах диагностики и лечения, о современной теории канцерогенеза, причинах развития онкологических заболеваний, развенчивает распространенные мифы о крови и ее болезнях. Эта книга содержит важные сведения, которые помогут вам более осознанно и уверенно общаться с врачами, однако ее цель – не только рассказать о возможностях диагностики и лечения гематологических заболеваний, но и расширить наши познания о крови – жизненно важной и необыкновенно интересной жидкой ткани организма.


Вирусы и эпидемии в истории мира. Прошлое, настоящее и будущее

С самого возникновения цивилизации человечество сосуществует с невидимыми и смертоносными врагами – вирусами. Оспа унесла больше жизней, чем все техногенные катастрофы и кровопролитнейшие войны XX века; желтая лихорадка не позволила Наполеону создать колониальную империю и едва не помешала строительству Панамского канала. Ученый-вирусолог, профессор Майкл Олдстоун, основываясь на свидетельствах современников ужасных эпидемий и ученых, «охотников за микробами», показывает, насколько глубоко влияние вирусов на жизнь человечества.


Неотрицаемое. Наш мир и теория эволюции

Билл Най — инженер, телеведущий популярных научных передач («Билл Най — научный парень») и директор Планетарного общества, занимающегося исследованиями в области астрономии и освоения космоса, а также популяризации науки. В своей книги об эволюции он увлекательно, с юмором, рассказывает о происхождении жизни, появлении новых видов, о дарвиновской теории и свидетельствах ее достоверности, которые мы можем найти в окружающей нас жизни, а также о последних исследованиях в медицине, биологии и генной инженерии.


Клеопатра

Последняя египетская царица Клеопатра считается одной из самых прекрасных, порочных и загадочных женщин в мировой истории. Её противоречивый образ, документальные свидетельства о котором скудны и недостоверны, многие века будоражит умы учёных и людей творчества. Коварная обольстительница и интриганка, с лёгкостью соблазнявшая римских императоров и военачальников, безумная мегера, ради развлечения обрекавшая рабов на пытки и смерть, мудрая и справедливая правительница, заботившаяся о благе своих подданных, благородная гордячка, которая предпочла смерть позору, — кем же она была на самом деле? Специалист по истории мировой культуры Люси Хьюз-Хэллетт предпринимает глубокое историческое и культурологическое исследование вопроса, не только раскрывая подлинный облик знаменитой египетской царицы, но и наглядно демонстрируя, как её образ менялся в сознании человечества с течением времени, изменением представлений о женской красоте и появлением новых видов искусства.


Ринг «быков» и «медведей»

«Быки» и «медведи» — так называются спекулянты, играющие соответственно на повышении и понижении курса ценных бумаг. Фондовая биржа и является тем местом, где скрещивают копья эти спекулянты-профессионалы. Анализируя механизм биржевой спекуляции, закономерности курсов ценных бумаг, кандидат экономических наук В. П. Федоров показывает социально-экономическую роль биржи, обнажает паразитизм биржевиков, царящую там обстановку узаконенного грабежа и прямой преступности. Работа написана популярно и доступна самому широкому кругу читателей.


Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.