Вопросы теоретической термодинамики - [4]

Шрифт
Интервал

– Гельмгольц разделил энергию системы на свободную и связанную. Полная энергия Гельмгольца не равна энергии Клазиуса с тем же обозначением «U»: U = F + D;

– Энтальпия получается из уравнения Клазиуса,

– Свободная энергия Гиббса получается на основании уравнения энтальпии, а, следовательно, и уравнения Клазиуса.

– Отличия в уравнениях Клазиуса и Гельмгольца переходят в отличия между уравнениями Гиббса и Гельмгольца.

Теорема Нернста

В рамках квантовой статистики получена теорема Нернста, состоящая в том, что при абсолютном нуле энтропия равна нулю. В классической статистике такой результат не может быть получен так как энтропия вычисляется до аддитивной постоянной:



Формулировка теоремы Нернста:



При снижении температуры тело будет иметь состояние с минимальной энергией, в основном квантовом состоянии.

Статистический вес макроскопического состояния тела равен 1 и энтропия как логарифм 1 равна 0.

Энтропия обращается в 0 по степенному закону



На степенных законах основаны термодинамические расчеты по уравнениям:

Энтропия

Система делится на подсистемы с функцией распределения w>n.

Функция распределения является функцией энергии:



Находят вероятность энергии между E и (E + dE). Для этого обозначают через dГ число с вероятностью равной или меньше Е.

Распределение энергии по вероятности:


Площадь под кривой равна 1, т.е.:


Для кривой вводят прямоугольник с шириной ΔЕ, высота которого равна максимому кривой при площади равной 1:


Перепишем уравнение для W(E):


Число квантовых состояний:


Выполняется переход от квантовой статистики к классической статистике:


(s – число степеней свободы, ΔpΔq – фазовый объем, 2πℏ – объем клетки в фазовом пространстве)

Энтропией подсистемы является логарифм величины ΔГ:


Энтропия положительная так как число состояний ΔГ больше 1.

В классической статистике энтропия определяется до аддитивной постоянной так как lndpdq имеет физическую размерность действия. При этом разность энтропий не зависит от выбора единиц.

Постоянная ℏ введена для того, чтобы ввести безразмерный статистический вес, в результате чего энтропия будет определяться однозначно величиной.

Энтропия записывается кроме того и через функцию распределения.

Для подсистемы:


Энтропия определяется в виде среднего функции распределения подсистемы:


Для замкнутой системы из подсистем, каждая из которых находится в одном из квантовых состояний:


Для неравновесных систем статистические веса и энтропия находятся по этим же уравнениям.

Ландау. Возрастание энтропии

Неравновесная система приходит в состояние равновесия.

Система переходит из состояния с минимальной энтропией в состояние с максимальной энтропией. В максимальном состоянии энтропия остается максимальной.

По законам статистике вселенная должна быть в состоянии равновесия, однако в реальности оно отсутствует. По Ландау это объясняется с применением теории относительности. Внешние условия для системы не являются стационарными при расширении вселенной. Вселенная рассматривается как система в переменном гравитационном поле и закон возрастания энтропии не приводит к выводу о необходимом статистическом равновесии.

Литература

1. Ландау Л. Д., Лифшиц Е. М. Статистическая физика. Часть 1: Учебное пособие для вузов. – М.: Физматлит, 2010. – 616 с.

2. Тимирязев А.К. Второе начало термодинамики. Сади Карно – В. Томпсон-Кельвин Р. Клазиус- Л. Больцман М. Смолуховсвий. – М.-Л.: ГТТИ, 1934. – 312 с.

3. Гиббс Дж. В. Термодинамика. Статистическая механика. М.: Наука, 1982. – 584 с.


Еще от автора Константин Владимирович Ефанов
Аппараты с перемешивающими устройствами

Монография написана по проблемам проектирования химических и нефтяных аппаратов с перемешивающими устройствами. Подробно рассмотрен расчет вала на резонанс вручную по теории колебаний и теория расчета на компьютере.


Механизмы неорганических реакций выплавки чугуна и стали

В монографии рассмотрены проблемы механизмов неорганических реакций железа в процессах выплавки чугуна и стали, проблемы получения монокристаллической структуры решетки.


Выбор конечных элементов для расчета нефтяных аппаратов

В работе рассмотрена проблема выбора формв конечных элементов в программных пакетах для расчета оболочек корпусов статического оборудования нефтепереработки (аппараты емкостного и колонного типов). Предназначена для специалистов, занимающихся прочностными расчетам нефтяных и атомных сосудов и аппаратов под давлением, конструкторов аппаратов.


Теория расчета нефтяных аппаратов высокого давления

Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.