Вопрос жизни - [127]
et al. Intrinsic aerobic capacity sets a divide for aging and longevity // Circulation Research 109: 1162–1172 (2011).
Wisløff, U., Najjar, S. M., Ellingsen, O., et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity // Science 307: 418–420 (2005).
Прокариота или эукариота?
Wujek, D. E.Intracellular bacteria in the blue-green-alga Pleurocapsa minor // Transactions American Microscopical Society 98: 143–145 (1979).
Yamaguchi, M., Mori, Y., Kozuka, Y., et al. Prokaryote or eukaryote? A unique organism from the deep sea // Journal of Electron Microscopy 61: 423–431 (2012).
Об иллюстрациях
Рис. 1. Филогенетическое дерево, отражающее химерное происхождение сложных клеток. См.: Martin, W.Mosaic bacterial chromosomes: a challenge en route to a tree of genomes // BioEssays 21: 99–104 (1999).
Рис. 3. А. Fawcett, D.The Cell. W. B. Saunders, Philadelphia (1981). Б. Mark Farmer, University of Georgia. В. Newcastle University Biomedicine Scientific Facilities. Г. Peter Letcher, University of Alabama.
Рис. 4. А. Katz, L. A.Changing perspectives on the origin of eukaryotes // Trends in Ecology and Evolution 13: 493–497 (1998). Б. Adam, R. D.Biology of Giardia lamblia // Clinical Reviews in Microbiology 14: 447–475 (2001).
Рис. 5. Koonin, E. V.The incredible expanding ancestor of eukaryotes // Cell 140: 606–608 (2010).
Рис. 6. Soh, E. Y., Shin, H. J., and K. ImThe protective effects of monoclonal antibodies in mice from Naegleria fowleri infection // Korean Journal of Parasitology. 30: 113–123 (1992).
Рис. 7. Singer, S. J., and G. L. NicolsonThe fluid mosaic model of the structure of cell membranes // Science 175: 720–731 (1972).
Рис. 8. А. Sazanov, L. A., and P. HinchliffeStructure of the hydrophilic domain of respiratory complex I from Thermus thermophiles // Science 311: 1430–1436 (2006). Б. Baradaran, R., Berrisford, J. M., Minhas, G. S., and L. A. SazanovCrystal structure of the entire respiratory complex I // Nature 494: 443–448 (2013). В. Vinothkumar, K. R., Zhu, J., and J. HirstArchitecture of mammalian respiratory complex I // Nature 515: 80–84 (2014).
Рис. 9. Fawcett, D.The Cell. W. B. Saunders, Philadelphia (1981).
Рис. 10. Goodsell, David S.The Machinery of Life. Springer, New York (2009).
Рис. 11. Russell, M. J., and W. MartinThe rocky roots of the acetyl-CoA pathway // Trends in Biochemical Sciences 29: 358063 (2004).
Рис. 12. Deborah S. Kelley and the Oceanography Society (Oceanography 18 September 2005).
Рис. 13. А – В. Baaske, P., Weinert, F. M., Duhr, S., et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems // Proceedings National Academy Sciences USA 104: 9346–9351 (2007). Г. Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. LaneAn origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Рис. 14. Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. LaneAn origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Рис. 15. Woese, C., Kandler, O., and M. L. WheelisTowards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings National Academy Sciences USA 87: 4576–4579 (1990).
Рис. 16. Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. MartinEarly bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Рис. 17. Sojo, V., Pomiankowski, A., and N. LaneA bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 19. Sojo, V., Pomiankowski, A., and N. LaneA bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 21. Thiergart, T., Landan, G., Schrenk, M., Dagan, T., and W. F. MartinAn evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin // Genome Biology and Evolution 4: 466–485 (2012).
Рис. 22. Williams, T. A., Foster, P. G., Cox, C. J., and T. M. EmbleyAn archaeal origin of eukaryotes supports only two primary domains of life // Nature 504: 231–236 (2013).
Рис. 23. А – Б. Esther Angert, Cornell University. В – Г. Heide Schulz-Vogt, Leibnitz Institute for Baltic Sea Research, Rostock. См.: Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010); Schulz, H. N.The genus Thiomargarita // Prokaryotes 6: 1156–1163 (2006).
Рис. 24. Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010); Lane, N.Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 CSHP (2014).
Рис. 25. А. Wujek, D. E.Intracellular bacteria in the blue-green-alga Pleurocapsa minor // Transactions of the American Microscopical Society 98: 143–145 (1979).
С тех пор как в 1770-х годах кислород был открыт, ученые горячо спорят о его свойствах. Этот спор продолжается по сей день. Одни объявляют кислород эликсиром жизни — чудесным тонизирующим препаратом, лекарством против старения, косметическим средством и перспективным методом лечения. Другие воспринимают его как огнеопасное вещество и страшный яд, который в конце концов уничтожит нас всех. Ник Лэйн ответит на вопрос: кислород — наш единственный шанс на выживание или самый худший враг?
Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.
Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.
“Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта” – увлекательная научно-популярная книга, вторая книга Макса Тегмарка, физика и космолога, профессора Массачусетского технологического института. В ней он рассматривает возможные сценарии развития событий в случае появления на Земле сверхразумного искусственного интеллекта, анализирует все плюсы и минусы и призывает специалистов объединить свои усилия в борьбе за кибербезопасность и “дружественный” искусственный интеллект.
В этой книге, посвященной истории возникновения и развития науки о биологической основе человеческой психики, Эрик Кандель разъясняет революционные достижения современной биологии и проливает свет на то, как бихевиоризм, когнитивная психология и молекулярная биология породили новую науку. Книга начинается с воспоминаний о детстве в оккупированной нацистами Вене и описывает научную карьеру Канделя, от его раннего увлечения историей и психоанализом до новаторских работ в области изучения клеточных и молекулярных механизмов памяти, за которые он удостоился Нобелевской премии.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.