Вначале была аксиома. Гильберт. Основания математики - [49]
Гильберт был обескуражен новой политической ситуацией в Германии. Как-то он спросил у Блюменталя, своего первого аспиранта, какой курс тот читает, и услышал в ответ, что ему больше не разрешено вести занятия. Старик был ужасно возмущен. Когда на банкете его усадили рядом с новым министром образования и тот спросил: «Как в Гёттингене с математикой теперь, когда его очистили от еврейского влияния?», Гильберт парировал: «Математика в Гёттингене? Но ведь ее уже нет!»
С началом Второй мировой войны все стало еще более мрачным. Блюменталь эмигрировал в Нидерланды, однако немцы захватили эту страну в 1940-м и его арестовали. Он умер в том же году в печально известном лагере Терезиенштадт, что на территории современной Чехии. Феликс Хаусдорф, который написал первый учебник по теории множеств, покончил жизнь самоубийством, когда узнал, что ему и его семье предстоит депортация в концентрационный лагерь. Другие, например Банах, выжили, но серьезно пострадали физически, работая «кормителями вшей» в возглавляемом немцами бактериологическом институте, где исследовался тиф.
Давид Гильберт умер в Гёттингене 14 февраля 1943 года под рев орудий. На похоронах ученого присутствовали менее дюжины человек. Но сегодня живы слова, ставшие его эпитафией: Wir müssen wissen. Wir werden wissen — «Мы должны знать. Мы будем знать».
Список рекомендуемой литературы
Almira, J.M. y Sabina dk Lis, J.C., Hilbert. Matemdtico fundamental, Madrid, Nivola, 2007.
Bell, E.T., Los grandes matemdticos, Buenos Aires, Losada, 2010.
Boyer, C., Historia de la matemdtica, Madrid, Alianza, 1996.
Fresan, J., El sueno de la razon. La logica matemdtica у susparadojas, Barcelona, RBA, 2010.
Grattan-Guinness, I. (ed.), Delcdlculo a la teoria de conjuntos, Madrid, Alianza, 1984.
Gray, J.J., El reto de Hilbert, Barcelona, Critica, 2003.
Hilbert, D., Fundamentos de las Matemdticos, Mexico D.F., UNAM, 1993.
Kline, M., Matemdticos: la perdida de la certidumbre, Madrid, Siglo XXI, 1998.
Mancosu, P. (ed.), From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, Oxford University Press, 1998.
Mosteri'n, J., Los logicos, Madrid, Espasa-Calpe, 2000.
Odifreddi, P., La matemdtica del siglo xx, Madrid, Katz Barpal Editores, 2006.
Reid, C., Hilbert, Nueva York, Springer Verlag, 1970.
Stewart, I., Historia de las matemdticos, Barcelona, Critica, 2008.
Torretti, R., El paraiso de Cantor, Santiago de Chile, Editorial Universitaria, 1998.
Указатель
Entscheidungsproblem, или проблема разрешения 160, 161
ignorabimus 52, 53
Pnncipia mathematica 121-122, 156
Аккерман, Вильгельм 13, 111, 141, 149, 150, 152
аксиома
выбора 126, 128, 130, 131, 141, 162
параллельных прямых 28, 29, 31, 32, 36, 38, 42, 44, 162
анализ 8-11, 18, 26, 35, 44, 46, 50, 53, 56, 60, 61, 65, 69, 72, 77, 80, 81, 92-96, 101, 104, 106, 107, 112, 114, 130, 131, 137, 138, 147-149, 155, 164, 167
Банах, Стефан 98, 132, 168
Бернайс, Пауль 13, 111, 113, 128, 141, 150, 153, 158, 162, 168
бесконечность 11, 29, 93-95, 105, 107, 109, 112, 121, 124, 126-128, 134, 136, 137, 147, 151-154, 160, 161
актуальная 152
Бибербах, Людвиг 59, 167
Блюменталь, Отто 65, 67, 168
Бойяи, Янош 31-32, 85
Борн, Макс 99, 102, 103
Брауэр, Лёйтзен Эгберт Ян 11, 109, 131-137, 139-143, 148, 167
Бурбаки 166
вариационное исчисление 13, 60, 61, 63, 79, 72, 79-83, 88, 90, 94
Варинга гипотеза 85
Вейерштрасс, Карл 17, 67, 79, 83, 114
Вейль, Герман 64, 67, 102, 123, 138, 139-140, 142, 143, 167
Гаусс, Карл Фридрих 7, 8, 12, 18, 23, 24, 31, 32, 35, 39, 43, 65, 71, 78, 87, 134, 136
Гейзенберг, Вернер 99, 100, 102, 103, 104, 108
Гейтинг, Аренд 136, 138, 154
геометрия
евклидова 18, 28, 30-36, 40, 42-45, 89, 95, 112
неевклидова 15, 18, 26, 28-34, 38, 40, 42-44, 46, 87
Герц, Генрих Рудольф 41, 56, 71
Гёдель, Курт 9, 11, 13, 42, 53, 62, 112, 113, 138, 145, 150, 154- 162, 164, 165, 167
теорема о полноте 37, 150, 158, 160
теоремы о неполноте 11, 42, 154, 156, 158, 159
Гёттингенский университет 9, 13, 19, 24, 35, 39, 49, 55, 65, 67, 71, 72, 84, 88, 90, 93, 99, 100, 103, 111, 121, 127, 142, 153, 167, 168
Гильберта
бесконечный отель 121
кривая 133
проблемы 53, 57, 62, 64, 65, 82, 100, 162
программа 140, 145, 147, 150, 153, 154, 162
гильбертово пространство 10, 69, 93-97, 106-108
Гордан, Пауль 19-22, 45, 142
Гордана проблема 13, 15, 19, 22
Дедекинд, Рихард 37, 114, 117, 124, 126, 138, 143
Ден, Макс 54, 62, 67
Дирак, Поль 103-107
Дирихле, Петер Густав Лежён 77
проблема 13, 77-79, 82, 83, 93
доведение до абсурда 20, 21, 136, 137
доказательство 8, 20-22, 24-26, 28, 41, 52, 57, 61, 102, 114, 125, 128, 134, 141, 142, 149-152, 154, 156-159, 161, 167
конструктивное 12, 20, 22, 112, 135, 136, 138, 142
экзистенциальное 12, 20, 22, 112, 136, 141, 142
Евклид 7, 21, 25-28, 31, 32, 35-37, 44, 142, 166
инварианты 13, 19, 20, 22-24, 35, 49, 85
интуиционизм 11, 132-143, 147, 154, 163
истина 8, 27, 38, 41-44, 52, 53, 112, 116, 120, 122, 123, 134, 135, 136, 142, 145, 150, 151, 154, 155-159, 162-163
Кант, Иммануил 7, 17, 35, 43, 132, 134, 137, 139
Кантор, Георг 11, 24, 43, 53, 112— 114, 124-127, 129, 130, 133, 136, 137, 141, 143, 161, 162 категориальность 161
В книге автор рассказывает о непростой службе на судах Морского космического флота, океанских походах, о встречах с интересными людьми. Большой любовью рассказывает о своих родителях-тружениках села – честных и трудолюбивых людях; с грустью вспоминает о своём полуголодном военном детстве; о годах учёбы в военном училище, о начале самостоятельной жизни – службе на судах МКФ, с гордостью пронесших флаг нашей страны через моря и океаны. Автор размышляет о судьбе товарищей-сослуживцев и судьбе нашей Родины.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Данная статья входит в большой цикл статей о всемирно известных пресс-секретарях, внесших значительный вклад в мировую историю. Рассказывая о жизни каждой выдающейся личности, авторы обратятся к интересным материалам их профессиональной деятельности, упомянут основные труды и награды, приведут малоизвестные факты из их личной биографии, творчества.Каждая статья подробно раскроет всю значимость описанных исторических фигур в жизни и работе известных политиков, бизнесменов и людей искусства.
«В Ленинградском Политехническом институте была команда альпинистов, руководимая тренером и капитаном Василием Сасоровым. В сороковом году она стала лучшей командой Советского Союза. Получила медали рекордсменов и выполнила нормы мастеров спорта.В самом начале войны команда всем составом ушла на фронт. Добровольцами, рядовыми солдатами, разведчиками 1-й Горнострелковой бригады, вскорости ставшей болотнострелковой, ибо ее бросили не в горы, а защищать дальние подступы к Ленинграду.Нас было десять человек коренных ленинградцев, и нас стали убивать.
Всем нам хорошо известны имена исторических деятелей, сделавших заметный вклад в мировую историю. Мы часто наблюдаем за их жизнью и деятельностью, знаем подробную биографию не только самих лидеров, но и членов их семей. К сожалению, многие люди, в действительности создающие историю, остаются в силу ряда обстоятельств в тени и не получают столь значительной популярности. Пришло время восстановить справедливость.Данная статья входит в цикл статей, рассказывающих о помощниках известных деятелей науки, политики, бизнеса.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.