Вначале была аксиома. Гильберт. Основания математики - [42]
К концу 1920-х годов ангел формализма и демон интуиционизма все еще боролись за душу каждого математика. Но, к удовольствию Гильберта, формализм мчался на всех парусах. Казалось, «программа Гильберта» вот-вот свершится. Никто, даже самые реакционно и революционно настроенные математики, не могли изгнать формалистов из фантасмагорического собора, выстроенного из бесконечностей Кантора. Никто не мог заставить их перестать слушать симфонию бесконечности — классического анализа.
После 1900 года, когда Гильберт прочитал ту знаменитую лекцию в Париже, на III Международном конгрессе математиков 1904 года, проведенном в Гейдельберге, он представил свою точку зрения на кризис оснований, но в течение следующих 15 лет больше не возвращался к этой теме — анализ и физика полностью захватили его. Движимый желанием дать отпор интуиционистам, он снова обратился к теме основ математики сначала в 1917 году, а затем постоянно возвращался к ней с 1922 года. Для Гильберта и формалистской школы объекты математической мысли — это символы сами по себе, и фундаментальная проблема — это проблема устойчивости или непротиворечивости математики. Чтобы окончательно обосновать математику, он не нуждался ни в Боге, как Кронекер, ни в предположении об особенностях нашего восприятия в соответствии с принципом индукции, как Пуанкаре, ни в оригинальной интуиции, как Брауэр, ни даже в аксиоме о бесконечности или аксиоме о редуктивности, как Рассел и Уайтхед. Как таковая проблема оснований математики должна была окончательно устраниться после проверки на непротиворечивость аксиоматической системы математики.
Несложно проследить происхождение идей Гильберта. В 1900 году он опубликовал лекцию «Понятие числа», прочитанную годом ранее на ежегодной ассамблее Немецкого математического общества. После книги об основаниях геометрии эта работа стала его второй публикацией, касающейся аксиоматического метода. В ней он рассматривал два возможных подхода к математическим понятиям — генетический и аксиоматический. Классический пример применения генетического метода характерен для арифметики. Натуральные числа появляются на основе базовой интуиции счета: если требуется произвести вычитание любых натуральных чисел, система расширяется, чтобы включить в себя целые числа. Необходимость разделить два любых целых числа приводит к введению рациональных чисел, а чтобы иметь возможность извлекать корни, добавляются иррациональные числа и дается определение действительным числам. Гильберт отмечал, есть аксиоматический метод, типичный для геометрии (и для анализа, поскольку Гильберт показал, как аксиоматизировать действительные числа). Несмотря на высокую дидактическую ценность генетического метода, аксиоматический метод имеет преимущество обеспечения полной логической надежности. В этой ранней работе Гильберт открыто и впервые заявил о необходимости подхода к проблеме абсолютной непротиворечивости арифметики как к унаследованной от геометрии (относительную непротиворечивость которой он сам доказал). Этот вопрос занял второе место (ему предшествует только континуумгипотеза) в списке из 23 открытых проблем 1900 года; Гильберт вернулся к нему на конгрессе 1904 года, хотя и недооценил его сложность. Задача заключалась не в том, чтобы найти самые базовые модели, на которые можно было бы опереться, чтобы вывести непротиворечивость арифметики, как это было сделано с аксиомами геометрии (при этом была бы доказана только относительная непротиворечивость). Следовало разработать доказательство абсолютной непротиворечивости, основываясь на синтаксисе, а не на семантике, то есть выяснив, позволяет формальная система, выражающая арифметику, прийти к противоречиям или нет.
Однако только около 1904 года, когда стали проявляться парадоксы, Гильберт убедился, что основные усилия необходимо направить на аксиоматический анализ как часть более обширной задачи — установления непротиворечивости арифметики (поскольку и геометрия, и анализ были сведены к ней). Как обычно, Гильберт выбрал себе соратника — на этот раз Цермело — и поручил ему детальную разработку аксиоматизации теории множеств. Именно так начали вырисовываться два основных момента программы Гильберта: сперва аксиоматизация, затем непротиворечивость.
На первом этапе было необходимо формализовать теорию множеств, а также логику и арифметику. Наивные определения не позволяли вывести строгие рассуждения, лишенные парадоксов. Следовало полностью формализовать известную математику, переведя все ее содержимое в формальную систему, выраженную с помощью нового символического языка: 0 (число нуль), s (функция последующего члена), ¬ (не), v (или), ^ (и), →(вывод), Ǝ (квантор существования), перевернутое А(квантор всеобщности), = (равенство), х (переменная) и так далее. Как раз в 1928 году, спустя 50 лет после первого шага Фреге, Гильберт и Аккерман опубликовали «Основы теоретической логики» — учебник по дисциплине, сегодня называемой логикой первого порядка. Их формализация достигла канонического уровня, и сегодня она известна как система Гильберта — Аккермана. Они установили формальный синтаксис, а также предложили аксиомы и правила этой логики, что позволяет выводить новые формулы. Логика первого порядка превратилась в настоящее исчисление.
В книге автор рассказывает о непростой службе на судах Морского космического флота, океанских походах, о встречах с интересными людьми. Большой любовью рассказывает о своих родителях-тружениках села – честных и трудолюбивых людях; с грустью вспоминает о своём полуголодном военном детстве; о годах учёбы в военном училище, о начале самостоятельной жизни – службе на судах МКФ, с гордостью пронесших флаг нашей страны через моря и океаны. Автор размышляет о судьбе товарищей-сослуживцев и судьбе нашей Родины.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.