Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - [10]
Почему SARS-CoV-2 такой особенный
Описанные выше трюки коронавируса выглядят весьма хитроумными, но в действительности примерно так ведут себя очень многие вирусы. За миллиарды лет гонки вооружений со своими хозяевами они идеально отточили навыки захвата и порабощения чужих клеток>{9}. И все же у некоторых вирусов это получается лучше остальных. Например, из семи известных коронавирусов, которые способны заражать человека, только три — SARS, MERS и нынешний SARS-CoV-2 — представляют серьезную опасность, остальные же вызывают банальные простуды. SARS убил 10 % всех заразившихся, MERS — 34 %, от SARS-CoV-2 умирает, видимо, около 1 % инфицированных (точнее подсчитать можно будет только после того, как закончится активная фаза эпидемии). При этом пандемию устроил самый безобидный из «суровых» коронавирусов — SARS-CoV-2, — потому что научился отлично передаваться от человека к человеку. SARS и тем более MERS делали это существенно хуже.
Почему именно эти три вируса выбились в печальные лидеры и что такого особенного есть в SARS-CoV-2? Как минимум частично на эти вопросы ответил[16] один из самых цитируемых биоинформатиков мира Евгений Кунин. Он и его группа решили выяснить, чем смертельные коронавирусы отличаются от остальных. Исследователи сравнили геномные последовательности всех семи «человеческих» коронавирусов и обнаружили 11 участков, которые отличают высоколетальные штаммы от нелетальных. Эти участки находились в N-белке — на него в вирусной частице намотана РНК — и шиповидном S-белке, том самом, который отвечает за связывание вируса с клеточным рецептором ACE2. По сравнению с безобидными коронавирусами, N-белок у опасных штаммов лучше проникает в ядро, так как у него «прицельно» изменяется особая последовательность (NLS-участок, nuclear localization sequence), которую узнают белки, насквозь пронизывающие ядерную мембрану и избирательно пропускающие в и из ядра те или иные соединения.
То, что коронавирусные N-белки несут NLS-участки и умеют проникать в ядро клетки, которую они заразили, известно давно. Но вот зачем им это нужно — до сих пор не ясно. Геном коронавирусов записан в молекуле РНК, и для его прочтения и тем более намотки на нуклеокапсидный белок проникать в ядро не нужно: все необходимые клеточные ферменты есть в цитоплазме. Одна из гипотез предполагает, что, попав в ядро, N-белки каким-то образом влияют на считывание собственных клеточных генов — например, мешают зараженной клетке привлекать клетки иммунной системы. Косвенно эту гипотезу подтверждает факт повышенной патогенности свиных коронавирусов, чьи белки тоже проникают в ядро.
Другие изменения затрагивают непосредственно «хватательную» часть S-белка. Замена нескольких аминокислот делает ее более пластичной — то есть эта область может немного изменять свою трехмерную укладку. Не исключено, что именно повышенная гибкость позволяет ей хорошо прикрепляться не только к летучемышиному рецептору, но и к человеческому. Благодаря такой универсальности уханьский коронавирус мог легко преодолеть межвидовой барьер и перепрыгнуть с летучей мыши на человека. Для сравнения: хватательная часть спайк-белка MERS куда более неповоротлива. Именно поэтому, вероятно, он лишь изредка может перескочить с верблюда на человека и очень плохо передается между людьми.
Очень многие, в том числе и подкованные в биологии, люди уверены, что со временем все паразиты приспосабливаются к хозяевам и перестают убивать их направо и налево. Увы, но это утверждение не имеет под собой оснований. Начать с того, что эта логика работает только в ситуации, когда хозяев ограниченное количество — а это точно не наш случай. Кроме того, коронавирус лучше всего передается до появления симптомов, пока хозяин в любом случае еще жив (мы подробно обсудим этот вопрос в следующих главах). Ну и наконец, мы в основном видим вокруг себя приспособившиеся друг к другу пары паразит — хозяин (то есть первый использует последнего, но не убивает) не потому, что это обязательный конечный результат паразитизма. Просто пары, которые не приспособились, вымерли. Как вымерли 99,9 % всех видов, которые когда-либо существовали на планете. Во Вселенной нет органа, который бы выдавал гарантии эволюционного успеха, и, если паразит «выбирает» слишком агрессивную стратегию, он вымирает (вместе с хозяевами). Считать, что раз мы наблюдаем в основном умеренный паразитизм, то это и есть эволюционная норма, — классическая ошибка выжившего.
Понимание, какие именно места в белках нового коронавируса определяют его самые опасные черты, может помочь в разработке лекарств или вакцины против него. Пока ученые и медики тестируют в основном уже давно известные вещества, часть из которых обладает общим противовирусным действием (точнее, его вроде бы удается обнаружить в культурах клеток), а часть и вовсе была разработана для борьбы с другими вирусами и для лечения нынешнего их пробуют применять, так сказать, по аналогии. Очевидно, что специфический препарат, прицельно созданный для нейтрализации конкретного патогенного механизма конкретного коронавируса, будет куда эффективнее. И теперь у исследователей есть зацепки, в какую сторону думать для разработки такого препарата. Подробнее поговорим об этом в главах «Где лекарство?» и «Где вакцина?».
Почему одни люди с легкостью отказываются от соблазнов, а другие не в силах им противостоять? Автор книги, собрав самые свежие научные данные, доказывает, что люди, которым сложно сопротивляться искушениям, физиологически и биохимически отличаются от тех, у кого этих проблем нет. Из-за генетических особенностей у таких людей иначе распределяются и работают нейромедиаторы - вещества, которые регулируют работу мозга. Нарушения бывают разными: обладателям одних постоянно не хватает ощущения удовольствия, носители других испытывают от приятных вещей настолько сильные ощущения, что не могут противиться им.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.