Вероятности и неприятности. Математика повседневной жизни - [16]
О роли предопределенности или случайности в нашей судьбе, об истинности или призрачности нашего знания о природе пусть спорят философы. Я же призываю читателя взглянуть на мир с высоты математических абстракций и восхититься его красотой и согласованностью.
Глава 3. Головокружительный полет бутерброда с маслом
Тема падающих бутербродов не дает покоя ни широкой публике, ни исследователям. Десятки лет проводятся эксперименты, снимается кино, пишутся статьи, падающий бутерброд обрастает легендами и неправильными выводами. Мало какая столь же бесполезная задача привлекала к себе такое внимание. И если вы думаете, что это баловство, то имейте в виду, что за ее решение даже премии дают — правда, тоже несерьезные. В 1996 году Роберт Мэтьюз получил Шнобелевскую премию за работу «Падающий бутерброд, закон Мёрфи и фундаментальные константы»[10], опубликованную в European Journal of Physics. Несмотря на шуточную тему и соответствующую реакцию научного сообщества, это небезынтересная статья, в которой проводится тщательный анализ процесса соскальзывания и делается далеко идущий вывод: на какой бы планете ни возникли антропоморфные существа, живущие в атмосфере, они будут обречены на закон бутерброда. После такого триумфа бесполезных исследований можно бы тему и закрыть, но зачем упускать возможность рассмотреть на примере занятной задачки интересные и объективно полезные методы!
Айда кидать бутерброды в Монте-Карло!
Мы редко подбрасываем бутерброды, как монетку, — по крайней мере, когда становимся старше двух лет. Чаще всего мы невольно повторяем примерно один и тот же эксперимент: бутерброд, изначально расположенный маслом вверх, выскальзывает из рук или съезжает со стола. В процессе соскальзывания он закручивается, летит в воздухе и наконец шлепается на стол или на пол. На начальный этап падения влияет ряд параметров: трение о пальцы или поверхность стола, начальное положение бутерброда и его начальная скорость, высота падения — наконец, размеры бутерброда. Налицо динамическая система с несколькими входными параметрами и одним выходным — положением бутерброда на полу. Внутри системы, как и в случае с монеткой, работают механические законы, которые описываются дифференциальными уравнениями, и они детерминистические. Это значит, что в них нет никаких случайностей. Результат зависит только от входных данных, и при точном повторении параметров мы должны получать идентичные результаты. Это относится к модели бутерброда, представленной в виде системы дифференциальных уравнений. А что насчет настоящих бутербродов, шероховатых и неповторимых, роняемых настоящими людьми в ресторанах, на улице или на диване? Изменчивость реального мира можно описать, подавая на вход детерминистической системы случайные параметры.
Однако даже алгебра случайных величин, включающая в себя лишь сложение и умножение, — дело непростое, а у нас дифференциальные уравнения! Мы не полезем в эти увлекательные дебри, а используем отработанную во многих областях технику — метод Монте-Карло. Он состоит в определении свойств некой сложной системы в результате многократных испытаний с различными случайными параметрами. Подчеркну еще раз: исследуемая система не стохастична и не хаотична, и на случайные входные данные она реагирует предсказуемо. В методе Монте-Карло случайность нужна лишь для того, чтобы эффективно перебрать как можно больше вариантов и заглянуть во все реалистичные «углы», получив представление о поведении системы. Это универсальный метод, применяемый в самых разнообразных задачах. Обычно студенты впервые знакомятся с методом Монте-Карло, изучая численное интегрирование, например вычисляя площадь какой-либо сложной фигуры, задаваемой системой неравенств, которая не имеет приличного аналитического представления. То обстоятельство, что вероятность — мера, позволяет использовать метод Монте-Карло для вычисления мер (площадей и объемов) геометрических фигур.
Особенность предстоящего эксперимента с бутербродом состоит в том, что нас интересует зависимость вероятности того или иного его исхода от параметров задачи. Мы будем искать ответ на вопрос: при каких обстоятельствах выполняется закон бутерброда? Станем подавать на вход нашей динамической системы различные конкретные параметры и набирать статистику по падениям маслом вверх и маслом вниз. И результатом ряда экспериментов будет число — вероятность падения маслом вниз.
Я убежден, что намеренно ронять на пол настоящие бутерброды из хлеба и масла неправильно, поэтому воспользуемся математическим моделированием. Для решения задачи я взял один из доступных симуляторов физического мира, которые используют для создания онлайн-игр. Он легко позволил создать виртуальные стол и пол, а также два бутерброда. Один оказывался на краю стола, а второй «выскальзывал из пальцев», то есть соскальзывал с точечной опоры (рис. 3.1).
Рис. 3.1. Математические эксперименты с бутербродами
В моих силах задать все параметры задачи: начальные позицию и угол бутерброда, горизонтальную скорость для случая смахивания со стола, коэффициенты трения, размеры бутерброда и высоту падения. В момент, когда бутерброд касается пола, фиксируется угол бутерброда, вернее угол вектора, нормального к нему. О том, с какой стороны оказалось масло, нам скажет знак синуса этого угла: положительному значению соответствует удачный случай, а отрицательному — положение маслом вниз. Результат заносится в таблицу, и новый виртуальный бутерброд готов к падению. Задачу мы поставим такую: оценить вероятность приземления бутерброда маслом вниз при его падении с заданной высоты.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
В книге рассказывается о том, как на протяжении нескольких столетий ученые пытались выяснить, почему ночью темно. Оказывается, этот вопрос связан с самым общим устройством нашей Вселенной — с тем, конечна она во времени и в пространстве или бесконечна, расширяется ли она на самом деле и из чего состоит. В книге подробно обсуждаются основные наблюдательные факты, лежащие в основе современной космологии, и история их открытия.Для всех, кто интересуется астрономией и космологией — от старшеклассников до специалистов в других областях науки.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.