Великая Теорема Ферма - [62]
Рис. 16. Обычные арифметические действия можно представить как передвижения направо и налево по числовой оси
В обычной арифметике мы мыслим сложение как сдвиг по прямой на несколько делений — зазоров между отметками. Например, сказать: 2+4 = 6 — то же самое, что сказать: начните с отметки 2, сдвиньтесь вдоль числовой прямой на 4 деления и вы получите число 6. Но в арифметике вычетов по модулю 5 получаем, что
4 + 2 = 1.
Так происходит потому, что если мы начнем с отметки 4 и сдвинемся по окружности на 2 деления, то вернемся к отметке 1. Новая арифметика может показаться непривычной, но в действительности, мы пользуемся ей ежедневно, когда речь заходит о времени. Четыре часа после 11 (т. е. 11+4) обычно принято называть не 15, а 3 часами. Это — арифметика вычетов по модулю 12.
Помимо сложения в «часовой» арифметике можно производить и все другие обычные математические операции, например, умножение. В арифметике вычетов по модулю 12 имеем: 5·7=11. Такое умножение можно представить себе следующим образом: начав с отметки 0 и сдвинувшись на 5 групп из 7 делений в каждой, вы в конце концов дойдете до отметки 11. Это лишь один из способов мысленно представить себе умножение в этой арифметике; существуют более хитрые приемы, позволяющие ускорить вычисления. Например, чтобы вычислить 5·7, мы можем для начала просто вычислить обычное произведение, которое равно 35. Разделив затем 35 на 12, мы получим остаток, который и дает ответ на интересующий нас вопрос. Число 12 содержится в 35 дважды и плюс остаток 11, поэтому произведение 5·7 в арифметике вычетов по модулю 12 равно 11. Это равносильно тому, что мы мысленно дважды обошли циферблат, и нам осталось пройти еще 11 промежутков.
Так как в арифметике вычетов конечное число элементов, то в ней сравнительно легко найти все возможные решения любого уравнения. Например, не составляет труда перечислить все возможные решения кубического уравнения
x>3 — x>2 = y>2 + y
в арифметике вычетов по модулю 5. Вот они:
x = 0, y = 0,
x = 0, y = 4,
x = 1, y = 0,
x = 1, y = 4.
Хотя некоторые из этих решений не являются решениями в целых числах, в рассматриваемой арифметике вычетов все они — решения. Например, подставим значения (x=1, y=4) в наше уравнение:
x>3 — x>2 = y>2 + y,
1>3 — 1>2 = 4>2 + 4,
1 — 1 = 16 + 4,
0 = 20.
Но число 20 эквивалентно 0, так как число 5 делит число 20 с остатком 0.
Поскольку найти число решений кубического уравнения в целых числах крайне трудно, математики решили сначала определить число решений в различных арифметиках вычетов. Для приведенного выше уравнения число решений в арифметике по модулю 5 равно четырем. Это записывают так: E>5 = 4. Можно подсчитать число решений и в других арифметиках. Например, в арифметике вычетов по модулю 7 число решений равно 9, т. е. E>7 = 9.
Подводя итог своим вычислениям, математики составили список числа решений в каждой из арифметик вычетов и назвали его L-рядом эллиптической кривой (или соответствующего кубического уравнения). Что, собственно, означает здесь буква L, все давно забыли. Считается, что L означает Густава Лежена Дирихле, который также занимался изучением кубических уравнений. Для ясности я буду использовать обозначение «E-ряд» — ряд, полученный для кубического уравнения. Для приведенного выше уравнения E-ряд выглядит так.
Уравнение: x>3 — x>2 = y>2 + y;
E-ряд: E>1 = 1, E>2 = 4, E>3 = 4, E>4 = 8, E>5 = 4, E>6 = 16, E>7 = 9, E>8 = 16, …
Пока не известно, сколько решений имеют кубические уравнения в обычном числовом пространстве, которое бесконечно, E-ряды заведомо лучше, чем ничего. В действительности, E-ряд содержит в себе значительную долю информации о том уравнении, которое оно описывает. Подобно тому, как биологическая ДНК несет в себе всю информацию, необходимую для построения живого организма, E-ряд несет в себе наиболее существенную информацию об эллиптической кривой. Математики питали надежду, что E-ряд — это своего рода математическая ДНК, и что при помощи его они в конечном счете смогут вычислить все, что им хотелось бы знать об эллиптической кривой.
Работая под руководством Джона Коутса, Уайлс быстро заслужил репутацию блестящего специалиста по теории чисел, глубоко разбирающегося в арифметике эллиптических кривых. С каждым новым результатом и с каждой опубликованной статьей Уайлс, сам того не ведая, набирался опыта, который несколькими годами позже привел его к возможности доказать Великую теорему Ферма.
В то время еще никому не было известно, что в послевоенной Японии уже произошла цепь событий, которые позволят установить неразрывную связь между эллиптическими кривыми и модулярными формами. Именно эта связь и приведет впоследствии к доказательству Великой теоремой Ферма. Поощряя Уайлса к изучению эллиптических кривых, Коутс дал ему средства, позволившие осуществить давнюю мечту.
Глава 5. Доказательство от противного
Узоры математика, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
Г. Г. Харди
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
“Ни кошелька, ни жизни” Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине.
Саймон Сингх получил степень кандидата наук по физике в Кембриджском университете. Во время работы продюсером на Би-би-си снял удостоенный награды Британской академии кино и телевидения документальный фильм «Великая теорема Ферма» и написал бестселлер под тем же названием.Шифры используются с тех пор, как люди научились писать. В «Книге шифров» Саймон Сингх посредством волнующих историй о шпионаже, интригах, интеллектуальном блеске и военной хитрости показывает захватывающую историю криптографии..
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга воссоздает образ великого патриота России, выдающегося полководца, политика и общественного деятеля Михаила Дмитриевича Скобелева. На основе многолетнего изучения документов, исторической литературы автор выстраивает свою оригинальную концепцию личности легендарного «белого генерала».Научно достоверная по информации и в то же время лишенная «ученой» сухости изложения, книга В.Масальского станет прекрасным подарком всем, кто хочет знать историю своего Отечества.
В книге рассказывается о героических боевых делах матросов, старшин и офицеров экипажей советских подводных лодок, их дерзком, решительном и искусном использовании торпедного и минного оружия против немецко-фашистских кораблей и судов на Севере, Балтийском и Черном морях в годы Великой Отечественной войны. Сборник составляют фрагменты из книг выдающихся советских подводников — командиров подводных лодок Героев Советского Союза Грешилова М. В., Иосселиани Я. К., Старикова В. Г., Травкина И. В., Фисановича И.
Встретив незнакомый термин или желая детально разобраться в сути дела, обращайтесь за разъяснениями в сетевую энциклопедию токарного дела.Б.Ф. Данилов, «Рабочие умельцы»Б.Ф. Данилов, «Алмазы и люди».
Уильям Берроуз — каким он был и каким себя видел. Король и классик англоязычной альтернативной прозы — о себе, своем творчестве и своей жизни. Что вдохновляло его? Секс, политика, вечная «тень смерти», нависшая над каждым из нас? Или… что-то еще? Какие «мифы о Берроузе» правдивы, какие есть выдумка журналистов, а какие создатель сюрреалистической мифологии XX века сложил о себе сам? И… зачем? Перед вами — книга, в которой на эти и многие другие вопросы отвечает сам Уильям Берроуз — человек, который был способен рассказать о себе много большее, чем его кто-нибудь смел спросить.