В поисках кота Шредингера. Квантовая физика и реальность - [11]
Резерфорд дал этому объяснение. Каждая альфа-частица обладает массой, в 7000 раз превышающей массу электрона (фактически альфа-частица идентична атому гелия без двух электронов), и может двигаться на скорости, близкой к скорости света. Если такая частица сталкивается с электроном, она отбрасывает электрон в сторону и продолжает движение без каких-либо изменений. Отклонения должны объясняться положительным зарядом атомов металлической фольги (одинаковые заряды, как и одинаковые магнитные поля, отталкиваются друг от друга), но если арбузная модель Томсона была верной, частицы не могли отражаться. Если атом заполняла сфера положительного заряда, то альфа-частицы должны были проходить сквозь нее, ведь опыт показал, что большая часть частиц проходила прямо сквозь фольгу. Если арбуз пропустил сквозь себя одну частицу, он должен был пропустить и все остальные. Но если весь положительный заряд концентрировался в крошечном объеме, гораздо меньшем, чем объем целого атома, то время от времени альфа-частицы, со всего разбега налетающие на этот маленький сгусток материи и заряда, должны были отскакивать назад, в то время как большая часть альфа-частиц проходила бы сквозь пустое пространство между этими сгустками материи. Только таким образом положительный заряд атома мог иногда отталкивать положительно заряженные альфа-частицы, порой слегка сбивая их с пути, а порой практически не оказывая на них влияния.
Итак, в 1911 году Резерфорд предложил новую модель атома, которая стала основой нашего современного понимания атомной структуры. Он заявил, что в атоме должен быть маленький центр, который он назвал ядром. Ядро содержит в себе весь положительный заряд атома, который равен и противоположен отрицательному заряду облака электронов, окружающего ядро, и таким образом вместе ядро и электроны формируют электрически нейтральный атом. Последующие эксперименты показали, что размер ядра составляет всего около одной стотысячной размера всего атома: диаметр ядра обычно равняется 10>-13 см, а диаметр облака электронов – 10>-8 см. Чтобы вообразить себе это, представьте булавочную головку диаметром около миллиметра в центре собора Святого Петра, окруженную облаком микроскопических частичек пыли, выходящих далеко – скажем, на 100 метров – за пределы купола собора. Булавочная головка – это ядро атома, а частички пыли – это электроны. В атоме огромное количество свободного пространства, и все, казалось бы, твердые объекты материального мира состоят из таких пустых пространств, связанных вместе электрическими зарядами. Как вы помните, Резерфорд получил Нобелевскую премию, когда предложил новую модель атома (модель, основанную на опытах, которые он самостоятельно разработал). Но карьера его была еще далека от завершения, ведь в 1919 году он объявил о первой искусственной трансмутации элемента и в тот же год сменил Дж. Дж. Томсона на посту директора Кавендишской лаборатории. Его сначала посвятили в рыцари (в 1914 году), а затем, в 1931-м, сделали бароном Резерфордом Нельсоном. Несмотря на все это, включая Нобелевскую премию, самым значительным его вкладом в науку стала модель атома. Этой модели суждено было перевернуть всю физику, поставив очевидный вопрос: если противоположные заряды притягивают друг друга столь же сильно, как одинаковые заряды друг друга отталкивают, почему отрицательно заряженные электроны не падают на положительно заряженное ядро? Ответ нашелся в анализе взаимодействия атомов со светом, и это ознаменовало появление первого варианта квантовой теории.
Глава третья
Свет и атомы
Вопрос, поставленный моделью атома Резерфорда, покоился на известном факте, что движущийся электрический заряд, обладающий ускорением, испускает энергию в форме электромагнитного излучения: света, радиоволн или других подобных явлений. Если электрон просто находится рядом с ядром атома, то он должен упасть на ядро – то есть атом не будет стабильным. При разрушении такой атом должен испустить энергию. Чтобы справиться с этой склонностью атома к разрушению, естественным было предположить, что электроны вращаются вокруг ядра подобно тому, как планеты вращаются вокруг Солнца в Солнечной системе. Однако орбитальное движение предполагает наличие постоянного ускорения. Модуль скорости вращающейся частицы может оставаться неизменным, но направление ее движения меняется, и важным является то, что скорость (будучи вектором. – Примеч. пер.) определяется и модулем, и направлением. Если скорость вращающихся электронов изменилась, то они должны испустить энергию, а поскольку они потеряли ее часть, то в результате они должны упасть на ядро. Даже введя в модель орбитальное движение, теоретики не могли избавить атом Резерфорда от разрушения.
Пытаясь улучшить эту модель, теоретики отталкивались от представления об электронах, вращающихся вокруг ядра, и стремились найти способ удержать их на орбитах без потери энергии и падения на ядро. Это было естественной начальной точкой, которая хорошо согласовывалась с представлением о Солнечной системе. Однако это было неверно. Как мы увидим, это настолько же ошибочно, как представлять электроны находящимися в пространстве на некотором расстоянии вокруг ядра и не вращающимися вокруг него. Проблема та же самая – как предотвратить падение электронов? – однако это, как по волшебству, рождает совершенно другую картину, нежели та, в которой планеты вращаются вокруг Солнца. И это очень хорошо. Чтобы объяснить, почему электроны не падают, теоретики применили трюк, который не зависит от того, используем мы орбитальную аналогию или нет. Является ли она чрезмерной и неверной, также не имеет значения. Большинство людей до сих пор считают – из школы или популярной науки, – что атом подобен Солнечной системе и в центре него находится ядро, вокруг которого по круговым орбитам вращаются электроны. Теперь настало время избавиться от этого представления и постараться без предубеждений воспринять странный мир атома – мир квантовой механики. Давайте просто представим ядро и электроны, находящиеся рядом в пространстве, и зададимся вопросом, почему притяжение между положительным и отрицательным зарядами не приводит к тому, что атом разрушается, испуская при этом энергию.
Эта книга занимательно рассказывает о том, чего достигла современная наука и чего она еще сможет достичь. В ней описана увлекательная история поиска истинного возраста Вселенной и звезд. По мнению автора, это открытие – одно из величайших достижений человечества, которое доказывает, что современная физика стоит на верном пути к созданию теории всего.Книга будет полезна всем, кто интересуется физикой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
История ученого и личная биография объединились в этой книге, чтобы сделать полным рассказ о выдающемся человеке. Стивен Хокинг был необычным физиком: ему, возможно, удалось сделать больше, чем многим другим представителям академической науки, чтобы расширить наше, обывательское, понимание законов Вселенной. Его теоретические исследования природы черных дыр и оригинальные рассуждения о происхождении космоса расставили новые акценты в области общего знания: в центре внимания впервые оказалась теоретическая физика.
Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло)
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Работа представляет комплексный анализ антропологических и этических учений с древнейших времен до современности в их взаимозависимости и взаимовлиянии. Адресуется студентам и аспирантам гуманитарных вузов, а также широкому кругу читателей.
Штрихи к портретам известных отечественных и зарубежных деятелей науки: академиков – Г. Марчука, Л. Окуня, Ж. Алферова, А.Сахарова, С.Вавилова, Ф.Мартенса, О.Шмидта, А. Лейпунского, Л.Канторовича, В.Кирюхина, А.Мигдала, С.Кишкина, А. Берга, философов – Н.Федорова, А. Богданова (Малиновского), Ф.Энгельса, А. Пятигорского, М.Хайдеггера, М. Мамардашвили, В.Катагощина, выдающихся ученых и конструкторов – П.Чебышёва, К. Циолковского, С.Мальцова, М. Бронштейна, Н.Бора, Д.Иваненко, А.Хинчина, Г.Вульфа, А.Чижевского, С. Лавочкина, Г.Гамова, Б.
После Альбигойского крестового похода — серии военных кампаний по искоренению катарской ереси на юге Франции в 1209–1229 годах — католическая церковь учредила священные трибуналы, поручив им тайный розыск еретиков, которым все-таки удалось уберечься от ее карающей десницы. Так во Франции началось становление инквизиции, которая впоследствии распространилась по всему католическому миру. Наталия Московских рассказывает, как была устроена французская инквизиция, в чем были ее особенности, как она взаимодействовала с папским престолом и королевской властью.
В книге собраны воспоминания участников Отечественной войны 1812 года и заграничного похода российской армии, окончившегося торжественным вступлением в Париж в 1814 году. Эти свидетельства, принадлежащие самым разным людям — офицерам и солдатам, священнослужителям и дворянам, купцам и городским обывателям, иностранцам на русской службе, прислуге и крепостным крестьянам, — либо никогда прежде не публиковались, либо, помещенные в периодической печати, оказались вне поля зрения историков. Лишь теперь, спустя двести лет после Отечественной войны 1812 года, они занимают свое место в истории победы русского народа над наполеоновским нашествием.
Автор книги рассказывает о появлении первых календарей и о том, как они изменялись, пока не превратились в тот, по которому мы сейчас живем. Вы узнаете много интересного и познавательного о метрических системах, денежных единицах и увлекательных парадоксах физики, химии и математики. Занимательные исторические примеры, иллюстрируя сухие факты, превращаются в яркие рассказы, благодаря живому и образному языку автора.
Одна из первых монографий Александра Койре «Этюды о Галилее» представляет собой три, по словам самого автора, независимых друг от друга работы, которые тем не менее складываются в единое целое. В их центре – проблема рождения классической науки, становление идей Нового времени, сменивших антично-средневековые представления об устройстве мира и закономерностях физических явлений. Койре, видевший научную, философскую и религиозную мысли в тесной взаимосвязи друг с другом, обращается здесь к сюжетам и персонажам, которые будут находиться в поле внимания философа на протяжении значительной части его творческого пути.