В поисках частицы Бога, или Охота на бозон Хиггса - [43]

Шрифт
Интервал

Фермилабу был крайне необходим новый, мудрый и дальновидный лидер. Таким человеком был Леон Ледерман из Колумбийского университета в Нью-Йорке. Ледермана высоко ценили, у него была репутация ученого, глубоко преданного науке. Он сделал себе имя в физике, открыв новые частицы. Кроме того, у него было чудесное чувство юмора, в тяжелые моменты он умел вовремя пошутить, тем самым разрядить обстановку и поднять моральный дух своих сотрудников. Однажды во время пребывания в Брукхейвенской национальной лаборатории на Лонг-Айленде Ледерман наблюдал за экспериментом, в котором требовалось оградить оборудование толстым металлическим экраном. Ледерман каким-то образом раздобыл старую пушку с военного корабля, но, когда ее установили, оказалось, что внутри стальной трубы вырезан паз, который может помешать эксперименту. Ледерман нашел худосочного студента и попросил его залезть в пушку — забить мешающий паз тонкой стальной стружкой. Студент возился полчаса, а когда наконец выполз, заявил: “Хватит. Я ухожу”. Ледерман стал упрашивать молодого физика: Но вы не можете так уйти. Где я возьму другого студента нужного калибра?”

Когда речь заходила о физике, Ледерман становился романтиком. Он писал, что его каждодневная работа “заполнена тревогой, болью, лишениями напряженностью, приступами отчаяния, депрессии и уныния”. Все это было правдой, говорил Ледерман но все это стоило пережить ради редких моментов когда тебе приоткрывается что-то новое. Лучшие идеи, утверждал он, всегда приходят рано утром, когда большинство людей еще спит. “Ты смотришь, смотришь и вдруг видишь, что несколько цифр выпадают из ряда прочих — всплеск в данных. Ты обрабатываешь их с помощью разных статистических методов, ищешь ошибки, но пик не исчезает! Он реально существует. Значит, ты что-то нашел! На свете просто не существует ощущения, сравнимого с этим”.

Ледерман приехал в Фермилаб и увидел, что там явно не все в порядке. Сотрудники нервничали и хотели знать, что их ждет в будущем. Будет ли реанимирован проект сверхпроводящего бустерного кольца Уилсона, который позволил бы построить самый мощный в мире коллайдер частиц с энергиями 1000 ГэВ, или же лаборатория пойдет тем же путем, что и ЦЕРН, и преобразует основное кольцо уже существующего ускорителя в протон-антипротонный коллайдер? Чтобы решить эту проблему, Ледерман организовал некое действо, которое назвал День перемирия. Каждый мог высказать свой взгляд на будущее лаборатории, если он у него имелся. Ле дерман пригласил трех мудрецов-мэтров — Бойса Макдэниела из Корнеллского университета, Мэттью Сэндса из Калифорнийского университета в Санта-Крусе и Бертона Рихтера со Стэнфордского линейного ускорителя присутствовать в качестве судей. Их роль состояла в том, чтобы “с помощью умных, острых вопросов постараться сбить сторонников той или иной точки зрения с их позиции”.

Собрание началось в 9 часов утра и ноября 1978 года и продолжалось до 3 утра следующего дня. Измученные бурными, весьма эмоциональными спорами, физики решили закрыть прения они с нетерпением ждали решения Ледермана. На следующее утро за кофе и сэндвичами с лососем Ледерман с тремя мудрецами обсудили ситуацию. Преобразование основного ускорительного кольца в протон-антипротонный коллайдер дало бы шанс обогнать ЦЕРН в поисках W- и Z-частиц, но доводы сторонников этого плана не показались мэтрам и Ледерману убедительными. Вместо этого он решил бросить все ресурсы на строительство сверхпроводящего бустерного кольца, которое и собирался сконструировать Уилсон, и таким образом превратить ускоритель в более мощный коллайдер. Будущий ускоритель назвали “Теватроном”.

Решение Ледермана вовсе не означало, что ЦЕРН остался единственным участником гонки за первенство в открытии W- и Z-частиц. В Брукхейвенской национальной лаборатории тоже вовсю разрабатывались планы по строительству нового коллайдера, предназначенного специально для охоты за предсказанными частицами. В машине, названной “Изабель”, конструкторы решили использовать сверхпроводящие магниты, и она должна была быть запущена в начале 1980-х годов. Примерно в то же время готовился к экспериментам и модернизированный европейский коллайдер. Работы в ЦЕРНе шли успешно. Установки для получения и хранения антипротонов были запущены и работали. Детекторы установлены на свои места и проверены Системы охлаждения пучков заработали. В июле 1981 года после героических трехгодичных усилий в реконструированном ускорителе встретились первые пучки антипротонов и протонов. В течение нескольких часов камеры детекторов регистрировали столкновения частиц и античастиц, которые исчезали, оставляя после себя “облако” высокой энергии.

В Брукхейвене же коллайдер “Изабель” столкнулся с серьезными трудностями. Оказалось, сконструировать сверхпроводящие магниты не так просто, как думали американские инженеры. В то время как в ЦЕРНе физики уже начали с помощью своего модернизированного ускорителя поиски новых частиц, инженеры в Брукхейвенской лаборатории еще только работали с масштабными моделями. До настоящих испытаний коллайдера оставалось еще несколько лет.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.