В поисках частицы Бога, или Охота на бозон Хиггса - [42]

Шрифт
Интервал

ошибочно — некоторыми сотрудниками ЦЕРНа как оскорбление”.

Вскоре в ЦЕРНе началась работа по переделке ускорителя. Важным новым объектом стала система по созданию и хранению антивещества. Антипротоны получались при столкновении пучка протонов с металлической мишенью. На каждый миллион протонов, врезающихся в мишень, образовывался один антипротон. Антипротоны выкачивались, охлаждались и собирались в готовые к запуску в ускоритель пучки.

Для регистрации столкновений частиц требовались детекторы, и, чтобы сделать помещение для них, вырыли две огромные пещеры рядом с ускорителем. Первый детектор был огромным, очень сложным. Он весил более 2000 тонн. Конструкцию его разработал Карло Руббиа. Второй — меньше проще и дешевле — делала команда во главе с французским физиком Пьером Дарьюла. Детектор Руббиа был Голиафом, а детектор Дарьюла — Давидом, впрочем, ЦЕРН дал им более прозаические имена — UA1 и UA2 — по названию пещер, в которых они были установлены.

Строительные работы были в разгаре, когда в 1979 году Питер Хиггс прибыл на конференцию в Женеву. Конечно же он воспользовался шансом посетить ЦЕРН. Хиггсу устроили экскурсию по стройке и показали зияющую дыру в земле, где собирались монтировать установки для получения и хранения антипротонов. В то время работа Хиггса по суперсимметрии в Эдинбурге продвигалась с большим скрипом. Ему стало казаться, что только новое поколение, молодые люди, недавно защитившие свои докторские диссертации, могли сделать что-нибудь стоящее. “То, что они делают за дни, у меня отнимает недели”. — говорил Хиггс.

Говорят, что Эйнштейн однажды заметил, по-видимому полушутливо, что “не получивший заметного научного результата до тридцати лет потом уже никогда этого не сделает”. Сказал ли Эйнштейн эту фразу или нет, но определенная истина в ней несомненно присутствует. В то время Хиггс мучительно размышлял об этом. Он признавался. Я действительно много времени потратил на глупости, поэтому через некоторое время сдался. Мне было грустно. Я больше не мог конкурировать, и мне пришлось признать это”.

А тем временем в Фермилабе, расположенном на окраине Чикаго, разразился кризис. Напряженность в отношениях Роберта Уилсона с вашингтонскими чиновниками быстро нарастала. Уилсона назначили руководить строительством бустерного кольца для ускорителя Фермилаба, в котором использовались сверхпроводящие магниты. С его вводом рассчитывали достичь рекордной энергии 1000 ГэВ. Уилсон считал само собой разумеющимся, что Вашингтон будет финансировать этот проект, но вместо этого он был вызван на ковер для обсуждения сокращения финансирования проекта. Уилсон пытался увильнуть от участия в обсуждении, говоря, что его дело — запускать ускоритель, а не идти с протянутой рукой к чиновникам. Переговоры зашли в тупик, в результате проект потерял шансы на успех. 9 февраля 1978 года Уилсон сдался. В своем заявлении об отставке он жаловался, что из-за плохого финансирования ускоритель Фермилаба работает только на половинной мощности. Как конкурировать с ЦЕРНом, получающим в два раза больше денег? “Наши планы компенсировать их финансовые преимущества за счет увеличения энергии протонов на ускорителе Фермилаба до 1000 ГэВ с помощью использования сверхпроводящих магнитов разрушены из-за нерешительности властей и отсутствия минимальной поддержки”, — с горечью писал он.

В последние месяцы в Фермилабе Уилсон начал работать над прощальным подарком лаборатории — 10-метровым стальным гиперболоидным обелиском. При составлении сметы на сооружение скульптуры он, к своему ужасу, обнаружил, что только один счет — от сварщиков — составил 20 тыс долларов. Уилсон отреагировал в свойственной ему манере — заявил, что будет варить обелиск сам>112. Но тут возникла другая проблема. Местные сварщики, работающие в лаборатории, заявили, что ему не разрешено этого делать. “Почему это я не могу? Я — директор, — сказал Уилсон, — и могу делать все, что хочу”. Сварщики объяснили, что если он это сделает, то они уволятся. Сварочный цех в Фермилабе был отделением профсоюза сварщиков, а Уилсон не был членом профсоюза. Тогда Уилсон вступил в профсоюз, зарегистрировался в качестве ученика сварщика и стал работать над скульптурой все свободное время. Уилсон назвал скульптуру “Аква Алле Фуни” (Воду на канаты). Фраза эта взята из истории Рима XVI века, которую Уилсон пересказывал так: “В полной тишине, чтобы звуки не помешали, толпа сановников смотрела, как около тысячи человек с лошадьми поднимали на веревках египетский обелиск, стараясь поставить его вертикально. Когда обелиск был наполовину поднят, жар полуденного солнца нагрел канаты, и они стали трещать, растягиваться и проскальзывать. Когда обелиск накренился вбок, один генуэзский матрос из толпы крикнул “Аква алле фуни!”, что означает “Воду на канаты!”. Людям, поднимающим обелиск, было приказано пролить на канаты воду из бочонков; веревки опять натянулись и выровняли обелиск”.

Вечернюю церемонию открытия и освящения обелиска Уилсон решил посмотреть с небольшого катера недалеко от главного здания Фермилаба был пруд. Уилсон поднялся на борт с бутылкой шампанского, к нему присоединился Норман Рамсей, председатель Ассоциации университетских исследований (именно ему Уилсон подал свое заявление об отставке). Когда случилась заминка в церемонии, Уилсон не удержался и крикнул в сторону берега: “Воду на канаты!”


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.