В поисках бесконечности - [35]
Результаты Фурье были уточнены немецким математиком Дирихле, который показал, что графиком суммы тригонометрического ряда может быть любая, произвольно проведенная линия. Требуется лишь, чтобы число максимумов и минимумов на этой линии было конечным и линия не поднималась бесконечно высоко.
После длительного обсуждения, в котором приняли участие многие выдающиеся ученые (в том числе Н. И. Лобачевский), стало общепринятым следующее определение функции: "Переменная величина y называется функцией переменной величины x, если каждому значению величины x соответствует единственное определенное значение величины y".
В этом определении ни слова не говорилось о том, что функция должна задаваться одной и той же формулой на всем отрезке, где она определена. С современной точки зрения недочетом этого определения можно считать лишь то, что в нем идет речь о переменных величинах. Ведь с точки зрения "чистой математики" это понятие не имеет четкого определения. В начале XIX в. ученые ограничивались тем, что давали примеры переменных величин, встречающихся в физике (температура остывающего тела, путь или скорость неравномерного движения и т. д.). Они считали, что этим переменным величинам можно поставить в соответствие некую математическую переменную, изменение которой описывает ход изменения физической величины. Но при этом получалось, что одно из основных понятий математики как бы опирается на физическую идею времени.
Создание во второй половине XIX в. теории действительных чисел и построение теории множеств позволили арифметизировать и расплывчатое понятие переменной величины. Оказалось, что под переменной следует понимать букву, вместо которой можно подставлять числа, принадлежащие некоторому числовому множеству X. Разумеется, такой подход к понятию переменной был более статичным, чем принятый у ученых начала XIX в., в нем не было чувства движения, изменения. Но зато он позволил дать определение функции, свободное от лежащих вне математики понятий: "Функцией f, заданной на числовом множестве X, называется соответствие (правило), которое каждому числу x из этого множества сопоставляет число f(x)"
Столь общее определение позволило связать понятие функции с понятиями отображения, преобразования, оператора и т. д. Например, с этой точки зрения, сопоставляя каждому треугольнику его площадь, мы получаем функцию, заданную на множестве треугольников и принимающую значения в множестве положительных чисел. А сопоставляя треугольнику вписанную в него окружность, мы получаем функцию, заданную на том же множестве треугольников, но принимающую значения в множестве окружностей. Поскольку на координатной плоскости и треугольники, и окружности задаются некоторыми наборами чисел, то эти функции можно свести к некоторым числовым функциям. Вообще, числовые функции — один из важнейших видов функций, и потому в дальнейшем изложении мы ограничимся рассмотрением лишь таких функций, да к тому же заданных лишь на числовых множествах.
Под микроскопом.
Уточнение математических понятий — дело обоюдоострое. При этом, конечно, устраняются многие неясности, повышается четкость математической речи, становятся более убедительными доказательства теорем. Но такие достижения влекут за собой и определенные потери. То, что выигрывает наука в строгости, она часто теряет в наглядности. Кроме того, всегда возникает вопрос, соответствуют ли понятия, получившие строгие определения, тем грубым, наглядным образам, которые они призваны моделировать в математике. Тем самым камни преткновения, убранные с поля математики, обычно не исчезают, а лишь оказываются перенесенными на границу между этой наукой и ее приложениями.
Но для математической науки точные определения являются насущной необходимостью. Изучая свойства определяемых ими понятий, ученые узнают свойства тех математических моделей, с помощью которых они пытаются описывать реальный мир. И если эти свойства оказываются непохожими на ожидаемые, то это значит лишь, что модель не вполне удачна, что при ее построении были пропущены какие-то важные стороны объектов, для описания которых она была предназначена.
Поэтому, после того как было уточнено понятие функции, математики начали его изучать со всех сторон. И тут оказалось, что под введенное определение подпадают и объекты, которые математики прошлых столетий вряд ли стали бы рассматривать. Например, уже Дирихле отметил, что функцией является и соответствие, определяемое следующим правилом:
Ни одному математику XVIII в. не пришло бы в голову рассматривать такие соответствия. Они изучали лишь функции, которые описывали зависимости между физическими или геометрическими величинами. Но любое измерение конкретных величин производится с некоторой погрешностью, и потому для таких величин бессмысленно ставить вопрос, является ли их значение рациональным или иррациональным числом. Разумеется, на это можно возразить, что и значение функции
не слишком точно определено вблизи точки x = 0 — небольшая ошибка в измерении может превратить отрицательный ответ в положительный, резко изменив значение функции. По математики XVIII в. знали, что такие функции, как sgn x, являются лишь идеализированным представлением непрерывной функции, круто поднимающейся вверх на участке вблизи точки x = 0. Функция же Дирихле не годилась для самого идеализированного описания какого-либо реального процесса.
Оказалось, достаточно всего одного поколения медиков, чтобы полностью изменить взгляд на генетические заболевания. Когда-то они воспринимались как удар судьбы, а сейчас во многих случаях с ними можно справиться. Некоторые из них почти исчезли, как, например, талассемия, отступившая на Кипре благодаря определенным политическим мерам, или болезнь Тея–Сакса, все менее распространенная у евреев-ашкеназов. Случаи заболевания муковисцидозом также сократились. Генетические заболевания похожи на родовое проклятие, то появляющееся, то исчезающее от поколения к поколению.
Книга Рюди Вестендорпа, профессора геронтологии Лейденского университета и директора Лейденской академии жизненной активности и старения, анализирует процесс старения и его причины в широком аспекте современных научных знаний. Чему мы можем научиться от людей, которые оставались здоровыми всю свою исключительно долгую жизнь? Помогут ли нам ограничения в пище или гормоны, витамины и минеральные вещества? Как сохранить свои жизненные силы, несмотря на лишения и болезни? Автор систематизирует факторы, влияющие на постоянно растущую продолжительность жизни людей нашего времени. В книге подробно обсуждаются социальные и политические последствия этого жизненного взрыва.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Книга посвящена фундаментальным и прикладным аспектам проблем питания и ассимиляции пищи. В рамках новой междисциплинарной науки трофологии сформулированы основные постулаты теории адекватного питания, в которую классическая теория сбалансированного питания входит как важная составная часть. Охарактеризованы основные потоки, поступающие из желудочно-кишечного тракта во внутреннюю среду организма, эндоэкология и ее главные физиологические функции, роль кишечной гормональной системы в жизнедеятельности организма, общие эффекты этой системы и ее роль в развитии специфического динамического действия пищи.
Книга посвящена концепции естественных технологий живых систем на различных уровнях организации последних и изложению доказательств, позволяющих преодолеть противопоставление естествознания и технологии. Эта концепция обосновывается на примере наиболее важных процессов в живых системах, их эволюции и происхождения. Охарактеризованы некоторые закономерности, которые могут быть интерпретированы как общие для естественных технологий живой природы и производственных технологий. Показано, что такие подходы плодотворны для понимания биологии в целом, процессов, протекающих в живых системах различной сложности, взаимодействий естественных и производственных технологий, в частности в медицине, экологии, питании и т.д.
В книге в увлекательной форме рассказывается об открытии континентов в разные исторические эпохи. Восстанавливаются маршруты древних мореходов. Рассматриваются любопытные гипотезы и научные факты, свидетельствующие о неослабевающем интересе всех исследователей к истории развития и познания Мира. Автор, океанолог по профессии, ведущий научный сотрудник Института океанологии Российской академии наук, участник многочисленных экспедиций в Мировом океане. Он свой опыт и знания старается передать читателям этой книги.