В небе завтрашнего дня - [18]
Какие же силы заставляют в этом случае частицы газа в реактивной струе с большой скоростью вытекать из двигателя наружу? Зти силы — электрические.
Хорошо известно из курса физики, что одинаково заряженные электрические частицы отталкиваются друг от друга, а противоположно заряженные притягиваются. Это — так называемые электростатические, или кулоновы, силы. Они играют большую роль в технике. В частности, например, на использовании этих сил основаны некоторые виды «ядерной артиллерии», с помощью которой ученые бомбардируют атомные ядра, изучая их строение и действующие внутри ядер силы. Электрические силы воздействуют в этом случае на частицы, имеющие электрический заряд, например отрицательно заряженные электроны или положительно заряженные протоны (ядра атомов водорода) или альфа-частицы (ядра атомов гелия). В результате такого воздействия частицы разгоняются до огромных скоростей, иногда близких к максимально возможной в природе — скорости света в вакууме. Таким образом, эти частицы и превращаются в удобные «снаряды» для атомной бомбардировки.
Мысль использовать электрические силы для реактивных двигателей потому, собственно говоря, и приходит в голову, что с их помощью легко достигнуть больших скоростей истечения, совершенно не достижимых в обычных двигателях.
Но как использовать электрические силы для ускорения молекул газов, вытекающих из двигателя через сопло? Ведь эти молекулы не имеют заряда, они нейтральны, а на такие частицы электрические силы практически не действуют.
Однако нельзя ли сообщить молекулам электрический заряд какого-нибудь знака? Оказывается, можно. И в некоторых случаях достаточно легко. Такой процесс не только известен, но и широко используется в технике. Этот процесс электризации молекул носит название ионизации, и соответственно этому заряженные молекулы называются ионами. Вот почему, в частности, верхние слои земной атмосферы, состоящие в основном из электрически заряженных частиц воздуха, называют ионосферой.
Чтобы ионизировать молекулу, достаточно, например, оторвать от нее один из электронов ее электронной оболочки. Тогда молекула окажется заряженной положительно. Особенно просто это сделать в том случае, если один из электронов на электронной оболочке слабо связан с ядром атома, как это бывает в атомах металлов. Можно дважды, трижды и т. д. ионизировать молекулу, лишая ее электронную оболочку двух, трех и т. д. электронов (как известно, в недрах звезд ядра атомов вовсе лишены электронов).
Вот почему обязательным элементом ионного двигателя является так называемая ионизационная камера, в которой из молекул рождаются ионы. Для этого достаточно, например, пропускать молекулы через раскаленную металлическую сетку; слабо связанные с ядром атома электроны не выдерживают увеличивающихся из-за нагрева колебаний и отрываются от молекулы.
Остальное уже просто. Раз есть ионы, то их «нетрудно разогнать до больших скоростей с помощью электростатических сил. Можно воспользоваться, в частности, каким-нибудь ускорителем, вроде применяющихся в лабораториях ядерной физики, хотя здесь потребуются несравненно меньшие скорости. А можно просто пропустить ионы через конденсатор, пластины которого несут противоположный заряд. Если сделать такие пластины в виде сеток или установить их под углом друг к другу, то конденсатор будет испускать поток заряженных частиц большой скорости. Чтобы сам двигатель при этом не заряжался электричеством противоположного знака, оторванные от молекул электроны нужно тоже выбросить наружу с помощью такого же устройства.
Теория и опыт показывают, что в ионном двигателе нетрудно достигнуть скорости истечения 100 километров в секунду и даже более. Это в десятки и сотни раз больше, чем в обычных «химических» ракетных двигателях. Соответственно больше, естественно, и тяга, развиваемая каждым килограммом вытекающих частиц (ими могут быть, например, ионы металлов цезия или рубидия).
Может быть, ионному ракетному двигателю и суждено стать авиационным двигателем завтрашнего дня?
Нет, дело обстоит не так просто. Прежде всего возникает вопрос об источнике электрического тока, необходимом для такого двигателя. Не устанавливать же на самолете электростанцию обычного типа… Очень подходящим был бы атомный двигатель, в особенности с непосредственным преобразованием ядерной энергии в электрическую, но такого двигателя еще нет. А потом, как показывает расчет, ионный двигатель способен развивать лишь сравнительно небольшую тягу, так как количество вытекающих из него частиц при практически осуществимой мощности может быть относительно малым.
Вот почему ионные двигатели найдут себе, вероятно, применение в такой новой области авиации, какой является астронавтика. Для космических кораблей, совершающих полеты в поле слабого тяготения, то есть вдалеке от планет, ионный двигатель может оказаться очень выгодным. Впрочем, не исключено его применение в сочетании с другими двигателями и для сверхвысотной авиации.
Ионный двигатель далеко не единственный тип электроракетного двигателя, который может быть с успехом использован для этих целей. Наряду с ионными ученые разных стран исследуют в настоящее время и другие типы электрических ракетных двигателей, в которых обеспечивается гораздо более высокая скорость истечения, чем в самых совершенных обычных, то есть химических ракетных двигателях.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
В книге в популярной форме изложены принципы работы и устройства ракетных двигателей, работающих на твердом и жидком топливе. Приведено описание двигателей дальнобойной ракеты и ракетного самолета. Рассмотрены возможности, связанные с применением ракетных двигателей в авиации и артиллерии. Указаны пути и перспективы дальнейшего развития ракетных двигателей.
Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...
В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.
12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.
Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.
Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.
В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.
Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…
Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.